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Abstract With retreating sea ice and increasing human activities in the Arctic come a growing need for
reliable sea ice forecasts up to months ahead. We exploit the subseasonal-to-seasonal prediction database
and provide the first thorough assessment of the skill of operational forecast systems in predicting the
location of the Arctic sea ice edge on these time scales. We find large differences in skill between the
systems, with some showing a lack of predictive skill even at short weather time scales and the best
producing skillful forecasts more than 1.5 months ahead. This highlights that the area of subseasonal
prediction in the Arctic is in an early stage but also that the prospects are bright, especially for late summer
forecasts. To fully exploit this potential, it is argued that it will be imperative to reduce systematic model
errors and develop advanced data assimilation capacity.

Plain Language Summary The need for reliable forecasts for the sea ice evolution from weeks to
months in advance has substantially grown in the last decade. Sea ice forecasts are of critical importance
to manage the opportunities and risks that come with increasing socioeconomic activities in the rapidly
changing Arctic, which, despite the reduction of the sea ice cover, remains an extreme environment. The
position of the sea ice edge is a key parameter for potential forecast users, such as Arctic mariners. However,
little is known about the ability of current operational subseasonal forecast systems to predict the evolution
of the ice edge. Therefore, we assess for the first time the skill of state-of-the-art forecast systems, using
a new verification metric that quantifies the accuracy of the ice edge position in a meaningful way. Our
results demonstrate that subseasonal sea ice predictions are in an early stage, although skillful predictions
1.5 months ahead are already possible. We argue that relatively modest investments into reducing initial
state and model errors will lead to major returns in predictive skill.

1. Introduction

The observed rapid retreat of Arctic sea ice and the prospect of a virtually ice-free Arctic Ocean in late summer
by the middle of this century (Collins et al., 2013; Overland & Wang, 2013; Stroeve et al., 2007; Wang & Overland,
2009) have fueled socioeconomic interests in the region (Emmerson & Lahn, 2012; Stephenson et al., 2011).
As a consequence there is a growing demand for reliable predictions of Arctic weather and sea ice across
a wide range of time scales to reduce the risks that come with enhanced activities in the high north (Jung
et al., 2016).

Much of what is known about the skill of existing systems in predicting Arctic sea ice is based on the
Sea Ice Outlook (Stroeve et al., 2014)—an effort of the international research community that since 2008
has been aiming to build and evaluate seasonal sea ice prediction capabilities. So far, Sea Ice Outlook
dynamical predictions have shown limited skill, with simple statistical forecasts being of comparable quality
(Blanchard-Wrigglesworth et al., 2017; Stroeve et al., 2014). On the other hand, perfect-model studies suggest
significant potential predictability at seasonal time scales (Goessling et al., 2016; Guemas et al., 2016; Tietsche
et al., 2014), indicating that there is scope for major improvements. On much shorter weather time scales
(up to ∼10 days ahead) high-resolution forecast systems are increasingly being used by operational ice ser-
vices (Carrieres et al., 2017; Sea-ice information services in the world, edition 2017, 2017), and recent research
has started into exploring the predictability of sea ice on these shorter time scales (e.g., Mohammadi-Aragh
et al., 2018).

The potential for skillful predictions of Arctic sea ice on subseasonal-to-seasonal (S2S) time scales
has improved considerably through recent developments. Recognizing the urgent need for a better
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representation of the sea ice-ocean system, forecast centers are moving toward using fully coupled models
(Smith et al., 2015). This also holds for shorter weather time scales, where features such as the location of
the sea ice edge can feed back significantly to the atmosphere, thereby influencing the further evolution of
the coupled system (Jung et al., 2016). This development toward using coupled models is reflected by the
fact that 6 out of 11 forecast systems contributing to the recently established S2S Prediction database (Vitart
et al., 2012, 2016) include dynamical sea ice components. These dynamical models replace relatively crude
schemes where the sea ice state is simply persisted from its initial state and/or relaxed toward climatological
conditions. In fact, the S2S database constitutes an unprecedented opportunity for a thorough assessment
of state-of-the-art operational predictions of Arctic sea ice on subseasonal time scales. Numerous reforecasts
are available for each of the contributing systems, which is critical for making robust statements about the
skill and the associated uncertainties. Furthermore, the forecasts cover the whole annual cycle, allowing to
determine seasonal variations in skill. To our knowledge, this study represents the first assessment of these
systems in the Arctic, showing that the field of subseasonal prediction of Arctic sea ice is in an early stage, but
also highlighting that prospects for skillful predictions are bright.

2. Data

The ensemble forecasts analyzed here have been obtained from the database of the S2S Prediction project.
Here we consider only those six systems that include a sea ice model coupled to an atmospheric and ocean
model, thereby producing actual dynamical sea ice forecasts. The only exception is the older European Centre
for Medium-Range Weather Forecasts (ECMWF) forecast system (ECMWF Pres.) where the sea ice state is per-
sisted for the first 15 days of the forecast and then relaxed toward climatology. Archiving of real-time ensemble
forecasts in the S2S database started in January 2015 only. However, corresponding reforecasts are available
approximately for the previous two decades. The S2S forecast systems exhibit different forecast lengths, initial-
ization frequencies, ensemble sizes, data assimilation methods, and model physics (Supporting Information
S1, Table S1). Despite their differences, however, some forecast centers also share some of the same model
components, typically the ocean or sea ice model, including the extreme case of UK Met Office (UKMO) and
Korea Meteorological Administration (KMA) which share the same forecasting system altogether. Differences
in ensemble size and initialization frequency exist between real-time forecasts and the corresponding refore-
casts. The initialization strategy also varies among the systems: some feature a balanced assimilation among
sea ice, ocean, and atmospheric components (EMCWF, UKMO, and KMA, National Centers for Environmental
Prediction [NCEP]), in contrast Météo-France (MF) and China Meteorological Administration (CMA) adopt a
two tier initialization strategy. To ensure a sufficiently large sample size, while allowing comparability between
the systems, our analysis is focused on the common reforecast period 1999–2010. The sea ice concentration
fields from the S2S database are provided on a 1.5∘ × 1.5∘ longitude-latitude grid, although the sea ice models
run are at higher resolution (from 0.25∘ to 1∘).

The verification is carried out against daily sea ice concentration data from passive microwave (PMW) satel-
lite measurements. As for the forecast data, we use the 15% sea ice concentration contour to determine the
location of the ice edge. The main observational product used here is the Global sea ice Concentration data
record (OSI-SAF, 2016). Discrepancies between true and observed ice edge locations are mainly caused by the
summer melting over sea ice and snow. These are interpreted as open water by PMW sensors (Kwok, 2002;
Notz, 2014) and cause a northward shift of the ice edge (Comiso & Nishio, 2008). However, since most of the
forecast centers also assimilate PMW measurements, we expect this systematic error to be propagated also
to the forecasts and to have a limited impact on our analysis.

3. Methods

We apply the recently introduced Spatial Probability Score (SPS; Goessling & Jung, 2018) as verification metric,
which can be regarded as the extension of the Integrated Ice Edge Error (IIEE; Goessling et al., 2016) to prob-
abilistic ice edge forecasts. These metrics are specifically designed to capture the accuracy of the forecasted
ice edge and to overcome the limitations of more widely used metrics such as the difference in pan-Arctic sea
ice extent or area. The latter only evaluate the total extent of the ice cover, but fail to provide useful informa-
tion about its spatial distribution. In contrast, the SPS and the IIEE account not only for differences in total sea
ice extent but also for ice that is forecast at a wrong location.
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Figure 1. Annual-mean skill in terms of the SPS of the different forecast
systems (colored-solid lines) and the climatological benchmark forecast
(gray-solid line) in predicting the Arctic sea ice edge as a function of lead
time. Results have been averaged over the common reforecast period
1999–2010. Predictions with SPS values smaller than the climatological
value (≈ 0.55 ⋅ 106 km2) can be considered skillful. The shading and dashed
lines indicate ∼95% confidence intervals, based on standard errors obtained
from the twelve individual annual means. Note that the CMA forecast
system is not depicted given that its large errors lie outside of the range
shown. ECMWF Pres. is based on the predecessor ECMWF system, the main
difference being that sea ice was not simulated dynamically but prescribed
based on a combination of persistence and climatology. SPS = Spatial
Probability Score; NCEP = National Centers for Environmental Prediction;
CMA = China Meteorological Administration; MF = Météo-France;
ECMWF = European Centre for Medium-Range Weather Forecasts;
UKMO = UK Met Office; KMA = Korea Meteorological Administration.

The decomposition of the IIEE for the ensemble-median ice edge into
Overestimation (O) and Underestimation (U) or, alternatively, Absolute
Extent Error (AEE) and Misplacement Error (ME; Goessling et al., 2016) adds
information to the SPS and provides insights into the origin of forecast
errors. O is the spatial integral of all areas where the forecast sea ice con-
centration is above 15% but the observed sea ice concentration is below
15%; U is the spatial integral of all areas where the forecast sea ice con-
centration is below 15% but the observed sea ice concentration is above
15%. The AEE component represents the total difference in sea ice extent
between forecast and observation, while the ME component accounts for
sea ice that is forecast at a wrong location. A more extensive description
of the verification metrics can be found in the Text S1.

The computation of verification scores is conducted on a per-grid cell
basis. Therefore, it is necessary to remap either the forecast data or the
observations (or both) to a common grid and to investigate the impact of
the forecasts and observation resolution on our results. In the analysis, the
observational data were remapped by first-order conservative remapping
to the relatively coarse-resolution forecast data. Further details on the role
of resolution in observations and forecasts can be found in Text S2. Only
grid cells that are classified as ocean (including sea ice) in all models and
in the observations were used (see the resulting land-mask in Figure S4).
Employing a common conservative land-mask guarantees an unbiased
comparison of the skill of different forecast systems.

A meaningful assessment of the forecast skill requires the introduction of
observation-based benchmarks based on the same metric employed for
measuring the forecast error. If the forecast error is lower than that of a
benchmark, the dynamical forecasting system has some predictive skill.
Otherwise, the observational record can be used to build a better forecast.
We have followed two strategies to construct a meaningful benchmark.
First, we defined a climatological benchmark forecast as the 10-member

ensemble of states observed at the same time of the year during those 10 years preceding the respective
forecast target time. Second, we defined a persistence benchmark based on the observed sea ice conditions
one month before the forecast target time (Blanchard-Wrigglesworth et al., 2010). The climatological bench-
mark is more restrictive than the persistence benchmark for most of the year (see Text S3 and Figure S1) and
is therefore used to assess the skills of the S2S systems.

4. Results
4.1. Annual-Mean Sea Ice Forecast Skill
The annual-mean skill of different forecasts in predicting the Arctic sea ice edge can be inferred from Figure 1.
The most striking feature is that the forecast skill varies substantially across the different systems. Compared to
the climatological benchmark, the CMA and MF systems do not show any predictive skill, even at initialization
time. On the other hand, the ECMWF system shows predictive skill all the way to a lead time of 45 days. The
other systems (KMA, NCEP, and UKMO) are comparable to ECMWF for short lead times; the error growth is
larger, however, leading to a faster loss of predictive skill.

The wide range of error growth rates among the different models is in stark contrast to what can be found for
predictions of atmospheric fields, which are much more similar in terms of skill (Jung & Matsueda, 2016). This
highlights the fact that the field of sea ice prediction with weather and climate models is still in its infancy.

Although the skill of ECMWF, KMA, NCEP, and UKMO at initial time is much better than that of MF and CMA,
initial errors are still quite large (half the values of the climatological benchmark; Figure 1). Given that, based
on satellite data, the sea ice conditions should be reasonably well known at the time of the initialization, the
large initial errors suggest that there is still substantial scope for improving the data assimilation procedure
and thereby the prediction skill of subseasonal forecast systems.
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Figure 2. Skill in terms of the SPS of individual forecast systems in predicting the Arctic sea ice edge as a function of the time of the year (target date) and for six
different lead times (see legend). Results have been averaged over the common reforecast period 1999–2010. Note that Day 60 is missing for NCEP and ECMWF
(both versions) due to their shorter lead time ranges, and that Initial Time corresponds to Day 1 for all systems except NCEP and MF where it corresponds to Day
2 for technical reasons. SPS = Spatial Probability Score; ECMWF = European Centre for Medium-Range Weather Forecasts; UKMO = UK Met Office; KMA = Korea
Meteorological Administration; NCEP = National Centers for Environmental Prediction; CMA = China Meteorological Administration; MF = Météo-France.

The skill of the UKMO and KMA systems is almost identical (Figure 1) because of the same system shared.
However, given that they represent independent forecast realizations (ensemble members) of the chaotic
climate system, their agreement demonstrates that the data available in the S2S database allow to draw robust
conclusions about the skill of sea ice forecasts. Furthermore, noting that UKMO ensemble size is larger than
KMA (Table S1), the slightly higher skill of UKMO compared to KMA suggests that ensemble size matters to
improve sea ice edge predictions.

4.2. Seasonal Variations in Forecast Skill and Origins of Error
The results discussed so far were based on annually averaged values. However, since high latitudes experience
very different physical conditions at different times of the year, it appears likely that the predictability of Arctic
sea ice is seasonally dependent. In this section, this seasonality will be further explored.

Despite the specific biases affecting each system, a general feature of the SPS, including the climatological
benchmark, is a pronounced seasonal cycle with two peaks at the end of the winter and summer seasons
(Figure 2). This pattern can be explained by a corresponding seasonality of the ice edge length, which reaches
its maxima in late winter and in summer. In general, a longer edge simply implies on average a larger area
where forecast and observations can disagree.

The ECMWF system achieves the largest skill in late summer, when actual predictions remain for all the lead
times much better than climatological forecasts, which exhibits particularly low skill in this period (Figure 2,
top left). A possible explanation for this is that around September the uncertainty in the ice edge location is
the largest due to higher mobility of the ice. However, the ECMWF forecast system is able to capture a relatively
large fraction of that variability and therefore the forecast error is not larger around September than at other
times of the year. Lower relative skill is found from October through July; during this time of the year only
short-term forecasts out to ∼18 days achieve meaningful skill compared to the climatological benchmark.

The error components provide further insights into the performance of the ECMWF forecast system. An evi-
dent feature is a peak in SPS in July for short lead times (Initial, Day 8 and Day 18; Figure 2, ECMWF). This
reflects a less accurate initialization of the ice edge compared to the rest of the year. The O,U error decomposi-
tion (Figure S2) reveals that the peak is associated with a development of a substantial model bias: The initial
position of the ice edge is systematically underestimated (O ≈ 0% and U ≈ 100%) from July to October.

Interestingly, the forecasts less accurately initialized in July produce comparably skillful long-range (Day 45)
predictions for late summer, with an approximate balance between O and U (O ≈ 40% and U ≈ 60%, Figure
S2) and the ME dominating over the AEE (ME ≈ 70% and AEE ≈ 30%, Figure S3). A possible reason for this
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apparent contradiction is that the skill in late September, which marks the beginning of the freezing season,
is related to sources of predictability residing in components of the climate system other than the sea ice.
For example, the heat content stored in the surface ocean could influence the sea ice edge position in the
early freezing season (Blanchard-Wrigglesworth et al., 2010; Text S3). The underestimation of the initial ice
edge in the ECMWF system continues until late September, affecting the forecasts at longer lead times in
October. The striking transition at the beginning of the freezing season, when the underestimation and the
AEE components start to dominate, hints at a delayed onset of the ice growth season in the ECMWF system.

A similar seasonal cycle as for ECMWF can be found for UKMO, KMA, and NCEP, at least for forecasts out to
8–18 days, which show still some skill. For longer lead times (beyond Day 18), UKMO and KMA show a rapid
error growth in August and September. The decomposition of the forecast error reveals that this deterioration
of skill is associated with the development of a substantial model bias that is reflected by an underestimation
of the integrated Arctic sea ice extent (O ≈ 10% and U ≈ 90%, Figure S2, KMA and UKMO). The NCEP system
exhibits notable differences in how the initially similar imbalances evolve with lead time (Figure S2, NCEP).
In particular, the dominance of overestimation in January and February increases, and an initially balanced
state in August and September turns overestimation-dominated with lead time, pointing to positive model
biases for sea ice extent during these months. In contrast, a rapid transition from overestimation-dominated
to underestimation-dominated errors around the end of September hints at a delayed onset of the ice growth
season in the model, similar as in the ECMWF system.

The CMA system, which is outperformed by the climatological benchmark for all lead times and times of the
year, exhibits particularly large errors from August to October (Figure 2, CMA). From July to September the
skill decreases (i.e., the SPS increases) with lead time, implying that very large initial errors during this part
of the year are amended over the course of the forecast model integration toward a more realistic state. Fur-
thermore, the CMA system considerably overestimates the Arctic sea ice extent from November to June, and
underestimates the extent even more strongly from July to October (Figure S2, CMA). Moreover, the CMA
system features a series of negative SPS spikes in spring; the cause of these can be tracked down to a single
forecast bust associated with an erroneous initialization on 25 March 2007.

The MF system is approximately as skillful as the climatological benchmark from October to April, with only a
weak dependence on lead time (Figure 2, MF). During the melting season from May to September, however,
the MF system is less skillful and exhibits large initial errors that are slightly amended with growing lead time.
Errors in long-term prediction in September are dominated by an underestimation of the pan-Arctic sea ice
cover, whereas biases play a minor role in the MF system at other times of the year. This suggests that a more
accurate initialization of the MF system might already be sufficient to improve ice edge forecasts of this system
considerably.

4.3. The Benefit of Using a More Realistic Representation of Sea Ice and Ocean
ECMWF updated its operational forecast system in November 2016. Until then, sea ice conditions were deter-
mined based on the persistence of the initial conditions for the first 15 forecast days, followed by a relaxation
toward average sea ice conditions observed during the 5 years preceding the forecast target time (ECMWF
Pres.). The change to a more advanced approach, in which sea ice dynamics and thermodynamics are explicitly
represented by a sea ice model, provides a unique opportunity to study the impact of this critical development
of the forecast system. Note that the system update also included an increase of the ocean model resolution
from 1∘ to 0.25∘. For our assessment, we exploit the fact that reforecasts for 1999–2010 are available for both
versions of the ECMWF system. Figure S4 illustrates recent forecasts from the two ECMWF system versions
in comparison with the observed sea ice edge derived from different PMW products (OSI-SAF, 2016; Spreen
et al., 2008).

The accuracy of the ice edge location in the initial conditions is similar for the two versions of the ECMWF
system; with increasing lead time, however, the version with explicit sea ice physics included quickly outper-
forms the older version with simple sea ice treatment (Figures 1 and 2). This highlights that investments in
forecast system development can lead to major advances in predictive skill.

Not surprisingly, using persistence, even for short lead times, leads to an overestimation of sea ice during the
melting season from April to August and an underestimation during the growing season from October to
February (Figure S2, ECMWF Pres., dark and light blue lines). Around Day 18 of the forecasts, the older version
of the ECMWF system exhibits an intermittent increase in skill that is a result of the gradual transition from
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Figure 3. 30-day forecasts for 15 September 2007 of the sea ice probability (probability that sea ice concentration
exceeds 15%) as obtained from different forecast systems and from climatological and persistence benchmarks. The
observed sea ice edge (15% contour of OSI-SAF sea ice concentration) is also shown (red contour). ECMWF = European
Centre for Medium-Range Weather Forecasts; UKMO = UK Met Office; KMA = Korea Meteorological Administration; NCEP
= National Centers for Environmental Prediction; CMA = China Meteorological Administration; MF = Météo-France.

initial-state persistence toward average conditions of previous years (Figure 1). In fact, the temporary decrease
of the SPS from Day 19 to Day 22 suggests that the older version could have benefited from an earlier transition
toward climatological sea ice fields.

4.4. Case Study: The Summer of 2007
Some of our main results can be further illustrated by considering subseasonal sea ice forecasts for the excep-
tional summer of September 2007, which was the first in a series of summers with anomalously low Arctic
sea ice extent. Not surprisingly, the climatological forecast clearly overestimates the ice extent in large parts
of the Arctic (Figure 3). The ECMWF system clearly captures the observed sea ice edge in its 30-days fore-
cast. The ECMWF ensemble spread appears reasonable, with probabilities transitioning smoothly from 0 to 1
along the observed ice edge. This indicates that the ensemble is reliable, that is, neither underdispersive nor
overdispersive. In contrast, the NCEP forecast, although clearly more skillful than the climatology, is overcon-
fident regarding the ice edge location, with probabilities transitioning sharply from 0 to 1 in disagreement
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with observed ice edge. The UKMO and KMA systems produce very similar forecasts, including a region at
about 170∘W where the amount of sea ice is strongly underestimated, also confirming the similarity of the
systems. The CMA model is a clear outlier in the sense that initialization and model errors lead to the complete
absence of Arctic sea ice during this time of the year. The MF forecast is characterized mostly by overestima-
tion of the ice extent in the Siberian sector, combined with an underestimation along eastern Greenland. This
misplacement suggests that the MF system does not capture the particularly high sea ice transport through
Fram Strait which occurred in summer 2007. In this specific year, the persistence benchmark provides a bet-
ter representation of the September ice edge than other empirical schemes based on the climatological sea
ice state (ECMWF Pres. and the climatological benchmark forecast). This suggests that the use of the clima-
tological benchmark has particularly pronounced drawbacks in unusual years such as 2007, which are more
common in a rapidly changing climate.

5. Discussion

This paper provides the first overview of the subseasonal skill of state-of-the-art coupled forecast systems
in predicting the sea ice edge in the Arctic. By exploiting the recently established S2S database, we find a
surprisingly large range of skills with some of the systems showing no skill at all, even at short weather time
scales, and the best system producing skillful forecasts up to 45 days in advance. The fact that prediction skill
is largest in late summer suggests that useful long-range forecasts can be provided to stakeholders during a
time of the year when marine operations peak.

Our analysis of error components has revealed that seasonally dependent model biases play a critical role.
This calls for dedicated efforts to improve the realism of coupled models in the Arctic, with the ultimate aim
of reducing systematic model errors. Bias correction could be a means to improve real-time forecasts. In fact,
a method specifically designed to bias-correct ice edge forecasts has been recently proposed (Director et al.,
2017), and the reforecasts needed for bias correction are available in the S2S database. However, the size of
the biases in some of the models, which are comparable in size or even larger than the anomalies one would
like to predict, suggests that nonlinearity may be an issue.

The large differences in the accuracy of the initial conditions for sea ice between the systems is related to how
the forecasts are initialized, that is, the way observations are assimilated into the coupled models. A major
difference between the CMA and MF systems and the other (more skillful) systems is that the former two
systems do not directly assimilate any sea ice observations into their models, unlike the other systems that
assimilate sea ice concentration. In principle, one could have expected to see some skill also for the CMA and
MF systems because (i) they do assimilate other ocean variables that affect the sea ice, in particular sea surface
temperature and (ii) the evolution of the atmosphere, which largely drives sea ice anomalies, is constrained
through the assimilation of atmospheric observations. However, our results indicate that these aspects are
not sufficient to generate realistic sea ice initial states and that direct assimilation of sea ice observations is
required.

Even the systems with a more accurate initialization of sea ice (ECMWF, UKMO, KMA, and NCEP) exhibit con-
siderable ice edge initial errors that amount to about half of the error of the climatological benchmark. This
agrees well with the assessments of the Arctic sea ice cover in reanalyses by Chevallier et al. (2017) and Uotila
et al. (2018) who found a substantial spread in the sea ice edge position between reanalyses, particularly
in late summer. Several mechanisms could contribute to the initial error: one is that adjustments of sea ice
concentrations based on other assimilated variables (in particular, sea surface temperature) to obtain more
consistent states introduce inaccuracies in the ice edge location. Constraints related to delays in the avail-
ability of observational sea ice products might also contribute to the initial errors, although it is not obvious
whether such constraints applying to real-time operations are also an issue for the reforecasts.

We conclude that the accuracy of sea ice initial states needs further research and will be critical to advance the
field of Arctic sea ice forecasting on subseasonal time scales. While for short-range summer predictions (below
10 days) or subseasonal winter predictions, a correct initialization of the sea ice concentration field might be
sufficient to achieve skillful forecasts of the ice edge, for longer timescales the role of the sea ice thickness
initialization will be crucial, especially during the melting season. In this regard, new satellite observational
products have the potential to improve sea ice initial conditions considerably. Of particular interest are, for
example, sea ice thickness observations from multiple instruments, with a proven potential to help constrain
sea ice initial states (Day et al., 2014; Mu et al., 2017).
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The sea ice prediction is a central element of major international efforts such as the Polar Prediction Project
along with its flagship activity, the Year of Polar Prediction (Jung et al., 2016), suggesting that there is an
opportunity for resource mobilization and international coordination that promises imminent progress. These
factors, and the already achieved progress documented by our analysis, indicate that the prospects for
subseasonal prediction of Arctic sea ice are bright.
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forecast of Arctic sea-ice: Forecast uncertainty at pan-Arctic and regional scales. Climate Dynamics, 49(4), 1399–1410.
https://doi.org/10.1007/s00382-016-3388-9

Carrieres, T., Buehner, M., Lemieux, J., & Pedersen, L. T. (Eds.) (2017). Sea ice analysis and forecasting: Towards an increased reliance on
automated prediction systems. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108277600

Chevallier, M., Smith, G., Dupont, F., Lemieux, J. F., Forget, G., Yosuke, F., et al. (2017). Intercomparison of the Arctic sea ice cover in global
ocean-sea ice reanalyses from the ORA-IP project. Climate Dynamics, 49(3), 1107–1136. https://www.doi.org/10.1007/s00382-016-2985-y

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., et al. (2013). Long-term climate change: Projections,
commitments and irreversibility. In T. F. Stocker, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of working group
I to the fifth assessment report of the intergovernmental panel on climate change (pp. 1029–1136). Cambridge: Cambridge University Press.

Comiso, J. C., & Nishio, F. (2008). Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of
Geophysical Research, 113, C02S07. https://doi.org/10.1029/2007JC004257

Day, J. J., Hawkins, E., & Tietsche, S. (2014). Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophysical Research
Letters, 41, 7566–7575. https://doi.org/10.1002/2014GL061694

Director, H. M., Raftery, A. E., & Bitz, C. M. (2017). Improved sea ice forecasting through spatiotemporal bias correction. Journal of Climate,
30(23), 9493–9510. https://doi.org/10.1175/JCLI-D-17-0185.1

Emmerson, C., & Lahn, G. (2012). Arctic opening: Opportunity and risk in the high north, Chathman House. Retrieved from
https://www.chathamhouse.org/publications/papers/view/182839

Goessling, H. F., & Jung, T. (2018). A probabilistic verification score for contours: Methodology and application to Arctic ice edge forecasts.
Quarterly Journal of the Royal Meteorological Society, 144(712), 735–743. https://doi.org/10.1002/qj.3242

Goessling, H. F., Tietsche, S., Day, J. J., Hawkins, E., & Jung, T. (2016). Predictability of the Arctic sea ice edge. Geophysical Research Letters, 43,
1642–1650. https://doi.org/10.1002/2015GL067232

Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-Reyes, F. J., et al. (2016). A review on Arctic sea-ice
predictability and prediction on seasonal to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 142(695), 546–561.
https://doi.org/10.1002/qj.2401

Jung, T., Gordon, N. D., Bauer, P., Bromwich, D. H., Chevallier, M., Day, J. J., et al. (2016). Advancing polar prediction capabilities on daily to
seasonal time scales. Bulletin of the American Meteorological Society, 97(9), 1631–1647. https://doi.org/10.1175/BAMS-D-14-00246.1

Jung, T., & Matsueda, M. (2016). Verification of global numerical weather forecasting systems in polar regions using TIGGE data. Quarterly
Journal of the Royal Meteorological Society, 142(695), 574–582. https://doi.org/10.1002/qj.2437

Kwok, R. (2002). Sea ice concentration estimates from satellite passive microwave radiometry and openings from SAR ice motion.
Geophysical Research Letters, 29(9), 1311. https://doi.org/10.1029/2002GL014787

Mohammadi-Aragh, M., Goessling, H. F., Losch, M., Hutter, N., & Jung, T. (2018). Predictability of Arctic sea ice on weather time scales.
Scientific Reports, 8, 6514. https://doi.org/10.1038/s41598-018-24660-0

Mu, L., Yang, Q., Losch, M., Losa, S. N., Ricker, R., Nerger, L., & Liang, X. (2017). Improving sea ice thickness estimates by assimilating
CryoSat-2 and SMOS sea ice thickness data simultaneously. Quarterly Journal of the Royal Meteorological Society, 144(711), 529–538.
https://doi.org/10.1002/qj.3225

Notz, D. (2014). Sea-ice extent and its trend provide limited metrics of model performance. The Cryosphere, 8(1), 229–243.
https://doi.org/10.5194/tc-8-229-2014

OSI-SAF (2016). Global sea ice concentration climate data record. Retrieved from http://www.osi-saf.org/?q=content/global-sea-ice-
concentration-data-record-ssmrssmi.

Overland, J. E., & Wang, M. (2013). When will the summer Arctic be nearly sea ice free? Geophysical Research Letters, 40, 2097–2101.
https://doi.org/10.1002/grl.50316

Sea-ice information services in the world, edition 2017 (2017). World Meteorological Organization. (WMO-No. 574).
Smith, G. C., Roy, F., Reszka, M., Surcel Colan, D., He, Z., Deacu, D., et al. (2015). Sea ice forecast verification in the Canadian global ice ocean

prediction system. Quarterly Journal of the Royal Meteorological Society, 142(695), 659–671. https://doi.org/10.1002/qj.2555
Spreen, G., Kaleschke, L., & Heygster, G. (2008). Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research, 113,

C02S03. https://doi.org/10.1029/2005JC003384
Stephenson, S. R., Laurence, C. S., & Agnew, A. A. (2011). Divergent long-term trajectories of human access to the Arctic. Nature Climate

Change, 1, 156–160. https://doi.org/10.1038/nclimate1120
Stroeve, J., Hamilton, L. C., Bitz, C. M., & Blanchard-Wrigglesworth, E. (2014). Predicting September sea ice: Ensemble skill of the SEARCH sea

ice outlook 2008–2013. Geophysical Research Letters, 41, 2411–2418. https://doi.org/10.1002/2014GL059388
Stroeve, J., Holland, M. M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research

Letters, 34, L09501. https://doi.org/10.1029/2007GL029703
Tietsche, S., Day, J. J., Guemas, V., Hurlin, W. J., Keeley, S. P. E., Matei, D., et al. (2014). Seasonal to interannual Arctic sea ice predictability in

current global climate models. Geophysical Research Letters, 41, 1035–1043. https://doi.org/10.1002/2013GL058755
Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A., Bricaud, C., et al. (2018). An assessment of ten ocean reanalyses in the polar

regions. Climate Dynamics. https://doi.org/10.1007/s00382-018-4242-z
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., et al. (2016). The subseasonal to seasonal (S2S) prediction project

database. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-16-0017.1
Vitart, F., Robertson, A. W., & Anderson, D. L. T. (2012). Subseasonal to seasonal prediction project: Bridging the gap between weather and

climate. WMO Bulletin, 61(2), 23–28.
Wang, M., & Overland, J. E. (2009). A sea ice free summer arctic within 30 years? Geophysical Research Letters, 36, L07502.

https://doi.org/10.1029/2009GL037820

Acknowledgments
We are very grateful to the World
Climate Research Program (WCRP) and
to the World Weather Research Program
(WWRP), to operational forecast centers
and individuals that contribute to the
S2S database, as we are grateful to all
those involved in implementing and
maintaining the database. We thank
Steffen Tietsche for providing ECMWF
forecast data on the native grid; and we
thank him as well as Matthieu Chevallier
and Ed Blockley for very helpful
discussions. We also acknowledge the
OSI-SAF consortium, the University of
Bremen, and the NSIDC for making
their sea ice concentration products
available. L.Z. and H.F.G. acknowledge
the financial support by the Federal
Ministry of Education and Research of
Germany in the framework of SSIP
(grant 01LN1701A). T.J. acknowledges
the funding from the European Union’s
Horizon 2020 Research and Innovation
program project APPLICATE (grant
727862). All data analyzed here are
openly available. The S2S forecasts
database is hosted at ECMWF and
at CMA; the data can be retrieved
from the ECMWF data portal at
http://apps.ecmwf.int/datasets/data/
s2s/levtype=sfc/type=cf/. The OSI-SAF
sea ice concentration product can be
retrieved from the MET Norway FTP
server at ftp://osisaf.met.no/
reprocessed/ice/conc/v1p2/.

ZAMPIERI ET AL. 9738

https://doi.org/10.1175/2010JCLI3775.1
https://doi.org/10.1007/s00382-016-3388-9
https://doi.org/10.1017/9781108277600
https://www.doi.org/10.1007/s00382-016-2985-y
https://doi.org/10.1029/2007JC004257
https://doi.org/10.1002/2014GL061694
https://doi.org/10.1175/JCLI-D-17-0185.1
https://www.chathamhouse.org/publications/papers/view/182839
https://doi.org/10.1002/qj.3242
https://doi.org/10.1002/2015GL067232
https://doi.org/10.1002/qj.2401
https://doi.org/10.1175/BAMS-D-14-00246.1
https://doi.org/10.1002/qj.2437
https://doi.org/10.1029/2002GL014787
https://doi.org/10.1038/s41598-018-24660-0
https://doi.org/10.1002/qj.3225
https://doi.org/10.5194/tc-8-229-2014
http://www.osi-saf.org/?q=content/global-sea-ice-concentration-data-record-ssmrssmi
http://www.osi-saf.org/?q=content/global-sea-ice-concentration-data-record-ssmrssmi
https://doi.org/10.1002/grl.50316
https://doi.org/10.1002/qj.2555
https://doi.org/10.1029/2005JC003384
https://doi.org/10.1038/nclimate1120
https://doi.org/10.1002/2014GL059388
https://doi.org/10.1029/2007GL029703
https://doi.org/10.1002/2013GL058755
https://doi.org/10.1007/s00382-018-4242-z
https://doi.org/10.1175/BAMS-D-16-0017.1
https://doi.org/10.1029/2009GL037820
http://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/
http://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/
ftp://osisaf.met.no/reprocessed/ice/conc/v1p2/
ftp://osisaf.met.no/reprocessed/ice/conc/v1p2/

	Abstract
	Plain Language Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


