
Arctic Sea Ice in CMIP6
SIMIP Community

Abstract We examine CMIP6 simulations of Arctic sea-ice area and volume. We find that CMIP6
models produce a wide spread of mean Arctic sea-ice area, capturing the observational estimate within the
multimodel ensemble spread. The CMIP6 multimodel ensemble mean provides a more realistic estimate of
the sensitivity of September Arctic sea-ice area to a given amount of anthropogenic CO2 emissions and to a
given amount of global warming, compared with earlier CMIP experiments. Still, most CMIP6 models fail
to simulate at the same time a plausible evolution of sea-ice area and of global mean surface temperature.
In the vast majority of the available CMIP6 simulations, the Arctic Ocean becomes practically sea-ice free
(sea-ice area <1 × 106 km2) in September for the first time before the Year 2050 in each of the four emission
scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, and SSP5-8.5 examined here.

Plain Language Summary We examine simulations of Arctic sea ice from the latest generation
of global climate models. We find that the observed evolution of Arctic sea-ice area lies within the spread
of model simulations. In particular, the latest generation of models performs better than models from
previous generations at simulating the sea-ice loss for a given amount of CO2 emissions and for a given
amount of global warming. In most simulations, the Arctic Ocean becomes practically sea-ice free (sea-ice
area <1 million km2) in September for the first time before the Year 2050.

1. Introduction
In recent decades, Arctic sea-ice area has decreased rapidly, and the signal of a forced sea ice retreat has
clearly emerged from the background noise of year-to-year variability. Because of this, the ability of climate
models to plausibly simulate the observed changes in Arctic sea-ice coverage has become a central mea-
sure of model performance in Arctic-focused climate-model intercomparisons (e.g., Koenigk et al., 2014;
Massonnet et al., 2012; Melia et al., 2015; Olonscheck & Notz, 2017; Shu et al., 2015; Stroeve et al., 2007,
2012, 2014). In this contribution, we extend these earlier studies that examined model performance in the
third and fifth phases of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) by examining
model simulations from the sixth phase of the Coupled Model Intercomparison Project (CMIP6, Eyring
et al., 2015). For CMIP6, the Sea-Ice Model Intercomparison Project (SIMIP Notz et al., 2016) designed a spe-
cific set of diagnostics that allow for detailed analyses of sea ice related processes and thus a process-based
evaluation of sea ice simulations of the participating models. To lay the foundation for such analyses, we
here provide an initial overview of CMIP6 model performance by examining some large-scale, pan-Arctic
metrics of model performance and future sea-ice evolution, including a comparison to CMIP5 and CMIP3
simulations. A similar analysis for Antarctic sea ice is given by Roach et al. (2020).

2. Analysis Method
In this contribution, we examine two large-scale integrated quantities that describe the time evolution of
Arctic sea ice. These are the Northern Hemisphere total sea-ice area and total sea-ice volume, which can be
calculated readily from SIMIP variables as follows.

To obtain sea-ice area for CMIP6 model simulations, we use the SIMIP variable of Northern Hemisphere
sea-ice area siarean when provided. If siarean is not provided, we calculate the sea-ice area by multi-
plying sea-ice concentration on the ocean grid (siconc, preferred) or on the atmospheric grid (siconca)
with individual grid-cell area and then sum over the Northern Hemisphere. Note that we use sea-ice area as
our primary variable to describe sea-ice coverage instead of sea-ice extent, which is usually calculated as the
total area of all grid cells with at least 15% sea-ice concentration. Our choice to focus on sea-ice area derives
primarily from the fact that sea-ice extent is a strongly grid-dependent, nonlinear quantity, making it diffi-
cult to meaningfully compare between model output and satellite observations (cf. Notz, 2014). In addition,
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the observational spread across different satellite products is smaller for trends in sea-ice area than it is for
trends in sea-ice extent (Comiso et al., 2017).

To calculate sea-ice volume for CMIP6 models, we (1) directly use the SIMIP variable of Northern Hemi-
sphere sea-ice volume sivoln when provided, or (2) multiply the sea-ice volume per grid-cell area sivol
by individual grid-cell area and sum over the Northern Hemisphere, or (3) multiply sea-ice concentration
siconc, sea-ice thickness sithick, and individual grid-cell area and then sum over the Northern Hemi-
sphere. For CMIP5, only the sea-ice volume per grid-cell area (also called “equivalent sea-ice thickness,”
sit) is available, so we use method (2) for all CMIP5 models. We were unable to obtain sea-ice volume
data for CMIP3 models, so volume comparisons in the following are limited to CMIP5 and CMIP6 model
simulations.

To meaningfully estimate model performance relative to the real evolution of the sea-ice cover in the Arc-
tic, we must take internal variability into account (see, e.g., England et al., 2019; Kay et al., 2011; Notz,
2015; Olonscheck & Notz, 2017; Swart et al., 2015). Internal variability describes the spread in plausible cli-
mate trajectories in response to a given forcing scenario, owing to the chaotic nature of our climate system.
The observational record is just one such plausible trajectory, and no single model simulation can ever be
expected to perfectly agree with it because of its chaotic nature. Therefore, most CMIP6 models have been
run several times with slightly different initial conditions to estimate the range of trajectories that are com-
patible with a given model's physics. In the following, we take two different approaches to examine whether
a given model provides a plausible simulation of the observational record in light of internal variability.

First, for CMIP6 models, we estimate a best-guess CMIP6-average internal variability 𝜎cmip6 by averaging
across the individual ensemble spread of those models that provide three or more ensemble members (see
Table S3 in the supporting information for details). In calculating the standard deviation, we correct for
small sample size n by using Bessel's correction and then dividing the resulting standard deviation by the
scale mean of the chi distribution with n − 1 degrees of freedom. We then define all simulations that lie
within the range of 2𝜎 = ±2

√
𝜎

2
cmip6 + 𝜎

2
obs around the observational estimate as plausible simulations

(cf. Olonscheck & Notz, 2017). Here, 𝜎2
obs refers to the observational uncertainty explained below. This

approach allows us to also examine the plausibility of those models that only provide a single ensemble
member. In addition to considering internal variability explicitly, we reduce its impact by examining model
performance relative to a time average over several years. We take the first 20 years of the satellite record
(1979–1998) for comparing mean values, as those 20 years provide a compromise between using as many
years as possible and using a period with no strong trend in Arctic sea-ice area and volume. However, even
on multidecadal time scales internal variability affects the Arctic sea-ice cover, so averaging over 20 years is
not long enough an averaging period to remove the impact of internal variability entirely. To compare trends,
we examine the overlap period 1979–2014 of the satellite record, which begins in 1979, and the historical
period of CMIP6, which ends in 2014.

Second, in order to select a subset of models for estimating a best guess of the future evolution of the Arctic
sea-ice cover, we take the more strict approach to define a model as plausible if its ensemble spread includes
the observational record, considering observational uncertainty. These models are referred to as “selected
models” hereafter.

To obtain an observational estimate of sea-ice area, we use observational records of sea-ice concentration
from the OSI SAF (Lavergne et al., 2019), NASA-Team (Cavalieri et al., 1997) and Bootstrap (Comiso et al.,
1997) algorithms. sea-ice area is then calculated by multiplying the sea-ice concentration with individual
grid-cell area and summing over the Northern Hemisphere. For the NASA-Team and Bootstrap algorithms,
we filled the observational pole hole with the average sea-ice concentration around its edge (Olason &
Notz, 2014). For OSI SAF, we used the filled pole hole of the product itself. We take the spread of the three
algorithms obtained this way as the observational uncertainty 𝜎obs.

For sea-ice volume, we do not compare models with an observational estimate due to substantial uncertain-
ties for reanalysed and observed estimates of Arctic sea-ice thickness and thus volume (e.g., Bunzel et al.,
2018; Chevallier et al., 2017; Zygmuntowska et al., 2014).

For global mean surface temperature (GMST), we use the average of NOAAGlobalTemp v5.0.0 (Vose et al.,
2012), GISTemp v4 (GISTEMP Team, 2019; Lenssen et al., 2019), HadCRUT4.6.0.0 (Morice et al., 2012),
and Berkeley (Rohde et al., 2013) time series as an estimate for the mean evolution and the spread across
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Figure 1. Comparison of sea ice metrics as simulated by the first ensemble members of CMIP3 (blue), CMIP5 (orange),
and CMIP6 (green) models. The individual panels show the mean Arctic sea-ice area (SIA) in (a) March and
(b) September for 1979–1998; mean Arctic sea-ice volume (SIV) in (e) March and (f) September for 1979–1998; and
(c, d) the sensitivity over the period 1979–2014 of September sea-ice area to (c) CO2 emissions and (d) global annual
mean surface temperature (GMST). (g) The sensitivity of Arctic sea-ice area to CO2 emissions scattered against the
sensitivity of GMST to CO2 emissions. In (a)–(f), horizontal dashes represent the first ensemble member of each model
and crosses represent the multimodel ensemble mean. The thick dashed black lines denote the average of the
observational satellite products, where available. The dotted lines denote one standard deviation of observational
uncertainty. The green dashed lines denote the 2𝜎 plausible range including internal variability and observational
uncertainty as defined in section 2. The gray shadings around the lines denote overlays of estimated internal variability
from all CMIP6 models with three or more ensemble members, with each overlay representing the 1 standard
deviation spread of a single model. Hence, the darker the shading, the more models agree on internal variability to
cover a certain range.

these four records as an estimate for observational uncertainty. We calculate anomalies relative to the period
1850–1900, except for the shorter record of NOAAGlobalTemp where we calculate anomalies relative to
1880–1900. Because the 20-year running mean temperature fluctuations during these periods are less than
0.1◦C, our results are largely insensitive to this choice of baseline period (Figure S2). We take the spread of
the four products as the observational uncertainty 𝜎obs.

Historical anthropogenic CO2 emissions are taken from the historical budget of the Global Carbon Project
(Global Carbon Project, 2019). Future anthropogenic CO2 emissions for CMIP6 simulations are taken from
the respective SSP scenarios described by Riahi et al. (2017).

3. CMIP6 Model Performance
3.1. Mean Quantities
We start with an analysis of the mean sea-ice fields simulated by individual CMIP3, CMIP5, and CMIP6
models (Figures 1a, 1b, 1e, and 1f) over the period 1979–1998. To allow for a fair comparison across the
three CMIP phases, in this section we analyze only the first ensemble member of each model. Given the
large number of participating models, this results in a fair comparison: For models with several ensemble
members, the first ensemble member is as likely to be above a model's ensemble mean as below.
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For sea-ice area, we find a large spread across CMIP6 simulations both in March and in September
(Figures 1a and 1b), which usually are the months of maximum and minimum sea-ice coverage in the Arctic,
respectively. In March, the 1979–1998 mean sea-ice area simulated by CMIP6 models ranges from around
12 × 106 km2 to more than 20 × 106 km2 and thus includes the observational estimate of 14.4 × 106 km2

(Figure 1a and Table S3). Out of the 40 CMIP6 models, 21 are within the 2𝜎 = ±1.29 × 106 km2 plausibility
range around the observational estimate given by the CMIP6-average internal variability and observational
uncertainty as introduced in section 2 (Figure 1a and Table S3). CMIP3 and CMIP5 simulations also show
a large spread in mean March sea-ice area and include the observational estimate within their multimodel
ensemble spread (Figure 1a and Tables S1 and S2). However, in CMIP3 and CMIP5, the multimodel ensem-
ble spread is more evenly distributed around the observational estimate than in CMIP6, where most models
lie above it.

For the mean September sea-ice area over the period 1979–1998, the CMIP6 ensemble also shows a large
spread of individual simulations, ranging from around 3 × 106 km2 to around 10 × 106 km2 (Figure 1b and
Table S3). The observed value of around 6 × 106 km2 lies well within the range, and 25 out of 40 CMIP6
models are within the plausible range of 2𝜎 = ±1.49 × 106 km2 around this value (Table S3). The CMIP6
multimodel ensemble mean is very close to the observational estimate and well within the plausible range.
The same holds for CMIP3 and CMIP5, with their individual models also spanning a wide range around the
observational estimate (Figure 1b and Tables S1 and S2).

For sea-ice volume, we lack data for CMIP3 models and thus can only compare CMIP6 results to CMIP5
results (see Tables S2 and S3 for a detailed overview). For both phases of CMIP, the models produce a simi-
lar spread of simulated Arctic sea-ice volume from less than 20,000 km3 to more than 40,000 km3 in March
(Figure 1e), and from less than 5,000 km3 to more than 30,000 km3 in September (Figure 1f). Given a simu-
lated average spread from internal variability of around 2,000 km3, the large spread in sea-ice volume from
CMIP6 models can not be explained by internal variability alone. Instead, it is caused by the models' large
spread in simulated sea-ice area and thickness.

Based on this analysis of mean Arctic sea ice quantities, we find that there is little difference in overall model
performance between CMIP3, CMIP5 and CMIP6. The multimodel spread of the mean quantities remains
large, the observational record lies within the multimodel ensemble spread, and many models simulate
plausible values of mean sea-ice area when considering the impact of internal variability and observational
uncertainty. The multimodel ensemble means of the past three phases of CMIP are relatively similar to each
other and largely consistent with the observational record.

3.2. Sensitivity
In addition to their plausible simulation of mean quantities, the models' adequacy for simulating reality
hinges critically on their ability to realistically simulate the response of a given climate metric to changes in
external forcing. Internal variability causes a large spread of plausible climate trajectories in response to a
given change in the forcing and must carefully be taken into account when interpreting a possible mismatch
between a simulation and a given observational sea ice record (Jahn et al., 2016; Kay et al., 2011; Notz, 2015;
Olonscheck & Notz, 2017; Swart et al., 2015). We find this to remain valid for CMIP6 simulations.

For our analysis of the simulated sensitivity of Arctic sea ice to changes in external forcing, we calculate
two distinct quantities: first, the change in sea-ice area for a given change in cumulative anthropogenic CO2
emissions over the period 1979–2014 (Figure 1c) and second, the change in sea-ice area for a given change in
GMST over the period 1979–2014 (Figure 1d). Both quantities can be calculated from the previously demon-
strated linear relationships of sea-ice area to cumulative CO2 emissions (Herrington & Zickfeld, 2014; Notz
& Stroeve, 2016; Zickfeld et al., 2012) and to GMST (e.g., Gregory et al., 2002; Mahlstein & Knutti, 2012;
Rosenblum & Eisenman, 2016; Stroeve & Notz, 2015; Winton, 2011). Together, these two quantities allow
us to estimate whether CMIP6 models simulate changes in sea ice with the correct sensitivity to changes
in external forcing and whether they potentially do so for the right reason. This is because the relation-
ship between sea-ice area and cumulative anthropogenic CO2 emissions is an almost linear proxy for the
long-term time evolution of Arctic sea-ice area, as cumulative emissions map monotonously to time. In con-
trast, the sensitivity of sea-ice area to GMST changes is a proxy for the sensitivity of the sea-ice cover to one
particular response of the climate system to changes in external forcing.
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Our analysis reveals that over the historical period 1979–2014, 28 out of 40 CMIP6 models simulate a sen-
sitivity of the Arctic sea-ice area to cumulative anthropogenic CO2 emissions that is within the plausible
range of 2.73 ± 1.37 m2 of sea-ice loss per ton of CO2 emissions (Figure 1c and Table S3). In addition to the
larger spread of the CMIP6 multimodel ensemble, a major difference between CMIP5 and CMIP6 models
is that, in their first ensemble member analyzed here, only 3 out of 40 CMIP5 models simulate a larger loss
of sea-ice area per ton of CO2 emissions than observed. This number increases to 10 out of 40 models for
CMIP6. This results in the CMIP6 multimodel ensemble mean being closer to the observational estimate
than the CMIP5 and the CMIP3 multimodel ensemble means. It is, however, unclear whether this reflects
an improvement of model physics or primarily arises from the change in historical forcing in CMIP6 rel-
ative to CMIP5 (cf. Rosenblum & Eisenman, 2016). For example, in CMIP6 the historical ozone radiative
forcing is about 80 % higher than it was in CMIP5 (Checa-Garcia et al., 2018). In contrast, black carbon
emissions in the CMIP6 historical forcing are substantially higher over the past years than prescribed in the
CMIP5 RCP8.5 scenario (Gidden et al., 2019). The impact of these changes in non-CO2 climate drivers is
confounded into the sensitivity of sea-ice area to CO2 emissions (again, cf. Rosenblum & Eisenman, 2016).
Emissions of CO2 itself, and of methane, are largely unchanged over the historical period for CMIP5 and
CMIP6. However, for the future simulations the CMIP6 SSP5-8.5 scenario assumes higher CO2 emissions
and lower methane emissions than the CMIP5 RCP8.5 scenario (Gidden et al., 2019).

Examining the sea-ice loss per degree of global warming, we find that only 11 out of 40 CMIP6 models are
within the plausible range of 4.01±1.28 × 106 m2 of sea-ice loss per degree of warming (Figure 1d and Table
S3). This is comparable to CMIP5, where 9 out of 40 models were within this plausible range (Figure 1d
and Table S2). In CMIP3, not a single model provided a plausible sensitivity (Figure 1d). Also, the CMIP6
multimodel ensemble mean of Arctic sea-ice loss for a given amount of global warming is closer to (but still
outside) the plausible range than the multimodel ensemble mean of both CMIP5 and CMIP3. This might
indicate an improvement of CMIP6 models over previous CMIP phases on a process level, given that the
main physical link of sea-ice loss to any change in external forcing is given by a change in temperature.
However, as before, this might also be a reflection of a more realistic historical forcing of CMIP6 compared
to CMIP5 and CMIP3.

While the more realistic simulation of these two sensitivities might indicate progress in CMIP6 models'
capability to simulate the ongoing loss of Arctic sea ice, as in CMIP5 (Rosenblum & Eisenman, 2017) few
CMIP6 models are able to simulate a plausible amount of sea-ice loss and simultaneously a plausible change
in global mean temperature over time (or cumulative anthropogenic CO2 emissions). Of the CMIP6 models
analyzed here, these are ACCESS-CM2, BCC-CSM2-MR, CNRM-CM6-1-HR, FGOALS-f3-L, FIO-ESM-2-0,
GFDL-ESM4, GISS-E2-1-G, GISS-E2-1-G-CC, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, MPI-ESM1-2-LR,
MRI-ESM2-0, and NorESM2-MM. For the other CMIP6 models, those models that have a reasonable sea-ice
loss tend to have too much global warming, while those models that simulate reasonable global warming
simulate too little sea-ice loss (Figure 1g and Table S3). In particular, the models with a high sensitivity of
Arctic sea-ice area to anthropogenic CO2 emissions also display a high sensitivity of global mean temperature
to CO2 emissions. Hence, understanding this high climate sensitivity is most likely key to understanding why
some CMIP6 models display such rapid loss of Arctic sea ice. A recent study suggested this high sensitivity
to be caused by stronger cloud feedbacks (Zelinka et al., 2020).

If we plot the two sensitivity metrics against each other, it is generally impossible to distinguish a given
CMIP6 model from the cloud given by CMIP5 models, with the exception of the highly sensitive CMIP6
simulations that clearly fall outside the cloud of previous CMIP phases (Figure 1g). The lack of both such
high-sensitive simulations and of very low-sensitive simulations in CMIP5 might be one reason that the
correlation between the two metrics is lower for CMIP5 than for CMIP3 and CMIP6.

In summary, we find that over the period 1979–2014, CMIP6 models on average simulate a sensitivity of
Arctic sea ice that is closer to the observed value than CMIP5 and CMIP3 models, both relative to a given
CO2 emission (as a proxy for time) and to a given warming. However, only few models are able to simulate a
plausible sea-ice loss sensitivity to cumulative CO2 emissions and simultaneously a plausible rise in GMST.
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4. Projections of Future Arctic Sea Ice
The identified spread of CMIP models in simulating the past mean state and sensitivity to warming and
CO2 emissions introduces significant model uncertainty into future projections of the evolution of the Arctic
sea-ice cover. This model uncertainty remains large in CMIP6.

To address this issue when analyzing projections of when Arctic sea-ice area might drop below 1 × 106 km2,
a commonly used threshold for an ice-free Arctic, we take the following approach. First, we examine the full
range of CMIP6 model simulations, noting that the model spread provides a wide spectrum of the possible
future evolution of Arctic sea-ice area. Second, we narrow the range by considering only those models that
have the observations within their ensemble spread simultaneously for two key metrics (cf. Massonnet et al.,
2012): (a) the 2005–2014 September mean sea-ice area and (b) the observed sensitivity of sea-ice area to
cumulative CO2 emissions over the period 1979–2014. We choose these metrics because they correlate with
the first sea ice-free year at a correlation of R > 0.5 for all scenarios over the entire CMIP6 multimodel
ensemble. Note, however, that care must be taken when interpreting the range of selected models, as the
relationship between past and future evolution of a climate model is not always clear (Jahn et al., 2016;
Stroeve & Notz, 2015). On the other hand, it becomes more important that a model plausibly captures the
observed mean state of Arctic sea-ice area the lower that mean state becomes, because initial conditions
become more important as the observed sea ice state approaches ice-free conditions and the simulations
start entering the realm of decadal predictions. We hence trust that the range of uncertainty given by the
selected models gives a more realistic estimate of the true model uncertainty than that given by the full
CMIP6 multimodel ensemble. The selected models are printed in bold in Table S4.

In analyzing the future relationship between sea-ice loss and changes in the forcing, we find that the simu-
lated correlation between winter Arctic sea-ice area and cumulative CO2 emissions remains high well into
the future (Figure 2a). For summer, the linear relationship eventually decreases as more and more years of
zero Arctic sea-ice coverage are averaged into the multimodel mean (Figure 2d). In interpreting these results
quantitatively, it is of course important to note that CO2, while being the most important external driver of
observed changes in Arctic sea-ice coverage, is not the only cause of observed and future changes. Its domi-
nant role, however, holds well into the future and/or the additional impacts of other anthropogenic forcings,
such as methane and aerosols, remain roughly stable over time. Otherwise, the correlation between March
Arctic sea-ice area and cumulative CO2 emissions would not remain as stable over time and would not be
as independent of the specific forcing scenario (Figure 2a).

We also find that the simulated correlation of temperature with winter Arctic sea-ice area remains high well
into the future (Figure 2b), while again in summer the correlation eventually decreases as more models lose
their sea ice completely (Figure 2e).

The high correlation between sea-ice loss and changes in the forcing allows us to estimate the cumulative
future CO2 emissions, warming level, and eventually year at which the Arctic Ocean will practically be
sea-ice free for the first time, defined as the first year in which the monthly mean September sea-ice area
drops below 1 × 106 km2.

We find that CMIP6 models simulate a large spread of cumulative future CO2 emissions at which the Arc-
tic could first become practically sea-ice free in September (Figure 3a). The simulated future emissions for
the first occurrence of a practically sea-ice free Arctic Ocean range from 450 Gt CO2 below to more than
5,000 Gt CO2 above present cumulative emissions. However, 158 out of 243 simulations become practically
sea-ice free before future cumulative CO2 emissions reach 1,000 Gt CO2 above that of 2019 (equivalent to
about 3,400 Gt CO2 cumulative emissions since 1850). Considering only the models with ensemble members
within the plausible range of observed sea-ice evolution, we find a reduced range of 170 Gt below to 2,200 Gt
above cumulative future anthropogenic CO2 emissions when Arctic sea-ice area is projected to drop below
1 × 106 km2. Of these members from the selected models, the vast majority (101 out of 128) become practi-
cally sea-ice free at future cumulative CO2 emissions less than 1,000 Gt. This compares favourably with the
range of 800 ± 300 Gt estimated from a direct analysis of the observed sensitivity (Notz & Stroeve, 2018).
In combination, these estimates make it appear likely that the Arctic Ocean will practically lose its sea-ice
cover in September for the first time at future anthropogenic CO2 emissions of between 200 and 1,100 Gt
above that of 2019.
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Figure 2. Evolution of Arctic sea-ice area over the historical period and following three scenario projections in (a–c)
March and (d–f) September as a function of (a,d) cumulative anthropogenic CO2 emissions, (b, e) global annual mean
surface temperature anomaly, and (c, f) time for all available CMIP6 models. Thick lines denote the multimodel
ensemble mean, where all models are represented by their first ensemble member, and the shading around the lines
indicates one? standard deviation around the multimodel mean. Faint dots denote the first ensemble member of each
model, and thick black lines and crosses denote observations. Note that discontinuities in the multimodel ensemble
mean arise from a different number of available models for the historical period and the scenario simulations.

As a function of GMST, ice-free conditions occur across the entire CMIP6 multimodel ensemble at a global
warming of between 0.9 and 3.2◦C above preindustrial conditions of each individual model (Figure 3b). If
we select only those models with a reasonable simulation of past Arctic sea ice conditions, the estimated
temperature range decreases slightly to 1.3◦C to 2.9◦C. The upper end of this range is higher than the range
of 1.7 ± 0.4◦C estimated from a direct analysis of the observed sensitivity (Notz & Stroeve, 2018) and higher
than estimates from bias-corrected simulations that all project the first ice-free Arctic at temperatures below
2◦C (Jahn, 2018; Niederdrenk & Notz, 2018; Ridley & Blockley, 2018; Screen & Williamson, 2017; Sigmond
et al., 2018). This high bias is probably a reflection of the CMIP6 models' weak sensitivity of sea-ice area loss

Figure 3. CMIP6 projections of (a) future cumulative CO2 emissions, (b) global annual mean surface temperature
anomaly, and (c) year when September mean sea-ice area drops below 1 × 106 km2 for the first time in each
simulation. The numbers at the top of the panels denote the number of simulations that do not simulate a sea-ice cover
below 1 × 106 km2 by 2100 (top row) and the total number of simulations (bottom row) for each scenario. Each dot
represents a single simulation, with all available CMIP6 simulations shown in the figure.
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to global warming, resulting in too high estimates of the warming at which the Arctic becomes practically
sea-ice free in summer.

In the CMIP6 ensemble, the sea-ice area loss per cumulative CO2 emissions and degree of global warm-
ing does barely depend on the forcing scenario (Figures 3a and 3b). Scenario dependence is also very small
regarding the near-term future evolution of Arctic summer sea ice as a function of time until about 2040
(Figures 2f and 3c). This is related to the fact that until 2040, the scenarios evolve quite similarly (O'Neill
et al., 2016). Furthermore, given that the current sea-ice area is much smaller than it used to be, the impor-
tance of internal variability increases relative to the forced change necessary to lose the remaining sea-ice
cover in September. As a consequence, for some models the sea ice disappears earlier for the low-emissions
scenarios than for the high-emissions scenarios in the ensemble members provided to the CMIP6 archive
(Table S4). For all scenarios, the first year of practically sea ice-free conditions ranges from some years before
present to the end of this century (Table S4), with a clear majority of models reaching ice-free conditions
before 2050. This finding remains valid for the selected models. From the middle of the century onward,
scenario dependence becomes more and more evident. For example, the loss of sea-ice area in March occurs
much faster from 2050 onward in scenario SSP5-8.5 than in other scenarios (Figure 2c).

5. Conclusion
Based on the analyzed evolution of Arctic sea-ice area and volume in CMIP6 models, in this contribution
we have found the following:

• CMIP6 model performance in simulating Arctic sea ice is similar to CMIP3 and CMIP5 model perfor-
mance in many aspects. This includes models simulating a wide spread of mean sea-ice area and volume
in March and September; the multimodel ensemble spread capturing the observed mean sea-ice area in
March and September; the models' general underestimation of the sensitivity of September sea-ice area
to a given amount of global warming; and most models' failure to simulate at the same time a plausible
evolution of sea-ice area and of GMST.

• CMIP6 model performance differs from CMIP3 and CMIP5 in some aspects. These include a larger frac-
tion of CMIP6 models capturing the observed sensitivity of Arctic sea ice to anthropogenic CO2 emissions
and the CMIP6 multimodel ensemble mean being closer to the observed sensitivity of Arctic sea ice to
global warming. It is unclear to what degree these improvements are caused by a change in the forcing
versus improvement of model physics.

• The CMIP6 models simulate a large spread for when Arctic sea-ice area is predicted to drop below
1 × 106 km2, such that the Arctic Ocean becomes practically sea-ice free. However, the clear majority
of all models, and of those models that best capture the observed evolution, project that the Arctic will
become practically sea ice free in September before the year 2050 at future anthropogenic CO2 emissions
of less than 1000 GtCO2 above that of 2019 in all scenarios.

Appendix A: Authors and Affiliations
All authors contributed to discussions and the writing of the paper, as well as implementation or analysis
of SIMIP variables in CMIP6 models. Additional contributions are listed below.

Dirk Notz, Center for Earth System Research and Sustainability (CEN), University of Hamburg and Max
Planck Institute for Meteorology, Hamburg, Germany, cochair of SIMIP, led the development of this paper,
contributed to implementing the SIMIP protocol in MPI-ESM

Jakob Dörr, Max Planck Institute for Meteorology, Hamburg, Germany, carried out all data analysis for this
paper and compiled all figures and tables

David A. Bailey, Climate and Global Dynamics Laboratory, National Center for Atmospheric Research,
Boulder, CO, USA

Ed Blockley, Met Office Hadley Centre, Exeter, UK, contributed to the sea ice component of the UKESM
and HadGEM3 models

Mitchell Bushuk, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
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Jens Boldingh Debernard, Norwegian Meteorological Institute, Oslo, Norway, contributed to the sea ice
component of NorESM2-LM

Evelien Dekker, Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Meteoro-
logical Department at Stockholm University, Stockholm, Sweden

Patricia DeRepentigny, Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine
Research, University of Colorado Boulder, Boulder, CO, USA

David Docquier, Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
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John C. Fyfe, Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change
Canada, Ottawa, Ontario, Canada

Alexandra Jahn, Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine
Research, University of Colorado Boulder, Boulder, CO, USA; cochair of SIMIP

Marika Holland, Climate and Global Dynamics Laboratory, National Center for Atmospheric Research,
Boulder, CO, USA; SIMIP steering-group member

Elizabeth Hunke, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA; SIMIP
steering-group member

Doroteaciro Iovino, Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo sui Cam-
biamenti Climatici, Lecce, Italy

Narges Khosravi, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven,
Germany
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Alek Petty, Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland,
United States of America, and Earth System Science Interdisciplinary Center, University of Maryland,
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Arun Rana, Georges Lematre Centre for Earth and Climate Research, Earth and Life Institute, Université
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Lettie Roach, Atmospheric Sciences, University of Washington, Seattle, WA, United States of America

Erica Rosenblum, Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba,
Canada; contributed to the preliminary data analysis
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Tido Semmler, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven,
Germany
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Bruno Tremblay, Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada;
SIMIP steering-group member

Hiroyuki Tsujino, Meteorological Research Institute, Japan Meteorological Agency, Japan; contributed to
carry out the MRI-ESM2 experiments and to prepare the output for SIMIP analyses
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