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ABSTRACT

Increased human activity in the Arctic calls for accurate and reliable weather predictions. This study

presents an intercomparison of operational and/or high-resolution models in an attempt to establish a

baseline for present-day Arctic short-range forecast capabilities for near-surface weather (pressure, wind

speed, temperature, precipitation, and total cloud cover) during winter. One global model [the high-

resolution version of the ECMWF Integrated Forecasting System (IFS-HRES)], and three high-resolution,

limited-area models [Applications of Research to Operations at Mesoscale (AROME)-Arctic, Canadian

Arctic Prediction System (CAPS), andAROMEwithMétéo-France setup (MF-AROME)] are evaluated. As

part of the model intercomparison, several aspects of the impact of observation errors and representativeness

on the verification are discussed. The results show how the forecasts differ in their spatial details and how

forecast accuracy varies with region, parameter, lead time, weather, and forecast system, and they confirm

many findings from mid- or lower latitudes. While some weaknesses are unique or more pronounced in some

of the systems, several common model deficiencies are found, such as forecasting temperature during cloud-

free, calm weather; a cold bias in windy conditions; the distinction between freezing and melting conditions;

underestimation of solid precipitation; less skillful wind speed forecasts over land than over ocean; and dif-

ficulties with small-scale spatial variability. The added value of high-resolution limited area models is most

pronounced for wind speed and temperature in regions with complex terrain and coastlines. However,

forecast errors grow faster in the high-resolution models. This study also shows that observation errors and

representativeness can account for a substantial part of the difference between forecast and observations in

standard verification.
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1. Introduction

The Arctic is experiencing rapid changes in its harsh

climate and environment, for example, the observed an-

nual averaged near-surface temperatures at Svalbard are

now increasing at between 1.048 and 1.768C decade21

(Hanssen-Bauer et al. 2019). Anticipated increases in

ship traffic, resource exploitation, tourism, and other

activities (WMO 2017) call for accurate and reliable

weather predictions for safe and efficient operations.

Despite improved Arctic forecast skill in recent decades

(Bauer et al. 2016; Jung and Leutbecher 2007), Jung et al.

(2016) argues that existing numerical weather prediction

(NWP) systems do not meet existing user requirements.

Furthermore, forecast errors in the Arctic are larger than

at lower latitudes (e.g., Nordeng et al. 2007; Bauer et al.

2016; Gascard et al. 2017). Nordeng et al. (2007) argue

that the main reasons for this are the sparse conventional

observational network and the small spatial scales of

many (high impact) Arctic-specific weather phenomena.

NWP systems are also often developed and tuned with a

focus on mid and lower-latitude weather.

Arctic verification studies of global model systems

often use model analyses as truth, given the relative

sparseness of observations. However, this introduces

uncertainty in the interpretation because a higher

spread between analyses compared to lower latitudes is

found since the analyses are less constrained by obser-

vations and are closer to their inherent model clima-

tology (Jung and Matsueda 2016; Bauer et al. 2016).

Bauer et al. (2016) found that verifying near-surface

temperatures in the Arctic against observations gave

substantially larger errors compared to verifying against

model analyses. To establish the state of the art on

Arctic forecast capabilities, more verification of near-

surface parameters, including snow and sea ice charac-

teristics, are needed (Jung et al. 2016).

The use of regional models can, compared with global

models, improve forecast accuracy by the use of opti-

mized physics for the targeted area and finer horizontal

and vertical resolution (Jung et al. 2016). However,

operational convection permitting resolution models

have just recently started to appear for the Arctic do-

main. Müller et al. (2017) and Yang et al. (2018) de-

scribe added value from operational high-resolution

HIRLAM–ALADIN Research on Mesoscale Opera-

tional NWP in Euromed (HARMONIE)–Applications

of Research to Operations at Mesoscale (AROME)

runs in the Arctic compared to coarser resolution sys-

tems. Furthermore, specific Arctic weather phenom-

ena, often connected to high-impact weather, have

been studied in both global and regional high-

resolution models. Models have been compared with

field observations and used as a tool to better un-

derstand the investigated phenomena. For example,

polar lows have received substantial attention (e.g.,

Kristjánsson et al. 2011), but remain a challenge in op-

erational forecasting because of their rapid growth and

mesoscale nature (e.g., Spengler et al. 2017). Arctic cy-

clones (e.g., Yamagami et al. 2018), and sudden strato-

spheric warming events (e.g., Jung and Leutbecher 2007;

Karpechko 2018) have also been the subject of recent

Arctic forecast skill evaluations. Other examples of

high-impact weather that have been studied are severe

precipitation events at Svalbard (Hansen et al. 2014;

Serreze et al. 2015) andmaritime icing on vessels (Sultana

et al. 2018; Samuelsen 2018).

The difference between a forecast value (grid box

average from an NWP system) and a point observation

can be decomposed into model, observation, interpola-

tion, and representativeness errors (Kanamitsu and

DeHaan 2011). The latter three components are

nonnegligible for verification studies, in particular in

the Arctic environment characterized by spatiotem-

poral sparseness and uncertainty in the observations

(Casati et al. 2017). The observation uncertainty has

been neglected in verification practices for several

decades. As forecast capabilities improve, however,

a larger part of the forecast–observation difference is

due to observational uncertainty and representativeness

mismatch rather than to model errors alone, in partic-

ular for short-range forecasts.

The Year of Polar Prediction (YOPP), with extra avail-

ability of observations and model simulations (Jung et al.

2016), is a great opportunity to improve our understand-

ing of forecast capabilities in the Arctic. In this study we

compare three high-resolution regional NWP systems

and one global NWP system during the YOPP Special

Observing Period NorthernHemisphere 1 (SOP-NH1, 1

February–31March 2018) with focus on surface weather

parameters. In addition, issues related to observational

uncertainty are discussed to improve our interpretation

of the verification results.

The NWP systems are briefly described in section 2,

together with the observations and weather during YOPP

SOP-NH1. Themodels are compared in terms of objective

verification scores in section 3, including a discussion on

some aspects of observation errors and representativeness

issues. In section 4, two cases of high-impact weather are

discussed before we summarize main findings in section 5.

2. NWP systems, observations, and weather

a. NWP systems

The NWP systems included in the comparison are

the high-resolution version of the global ECMWF
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Integrated Forecasting System (IFS-HRES) with 9-km

grid spacing (Buizza et al. 2017) and the three regional

convection permitting NWP systems: AROME-Arctic

with 2.5-km grid spacing (Müller et al. 2017; Bengtsson
et al. 2017), the Canadian Arctic Prediction System

(CAPS) with 3-km grid spacing (G. C. Smith et al. 2019,

unpublished manuscript), and AROME with Météo-
France setup (MF-AROME) with 2.5-km grid spacing

(Seity et al. 2011). Apart from spatial resolution, the

four forecast systems differ in their model formulations,

initialization methods, and in lateral and surface forcing

(details in Table 1). IFS-HRES and AROME-Arctic

forecasts are taken from daily operational runs and in-

clude data assimilation. CAPS and MF-AROME have

been set up as a dedicated effort during YOPP and are

initialized from global models without direct assimila-

tion of observations. Furthermore, AROME-Arctic and

MF-AROMEare both configurations of the samemodel

system but use different parameterizations in the tur-

bulence representation and for shallow convection, and

in addition a sea ice model is used in AROME-Arctic.

Despite their differences, they all provide short-range

forecasts for a common domain covering northern Scan-

dinavia, the Barents Sea, and Svalbard (Fig. 1) during

YOPP SOP-NH1.

b. Observations

In this study, we use quality controlled observations

from the Norwegian Meteorological Institute (MET

Norway; eklima.met.no). The quality control system

consists of both automatic and human quality control

routines to flag or remove suspicious or erroneous ob-

servations (Kielland 2005). In this study we only use

observations flagged as high-quality observations. Pres-

sure and temperature observations are from instanta-

neous measurements, while 10-m wind speed is the

mean wind over the last 10min. Total cloud cover is

visually observed, which has some implications for the

verification process, for example, the observations rep-

resent a larger spatial area, are taken less frequently, and

have different uncertainty characteristics than automatic

cloud cover observations (Mittermaier 2012). Further-

more, most of the precipitation gauges have single-Alter

shields (or are less shielded) implying an undercatch of

solid precipitation (Rasmussen et al. 2012).

To stratify the verification we divide the observation

sites into six regions (Fig. 1); Svalbard (14 stations),

islands (3 stations), coast (40 stations), fjords (39

stations), inland (25 stations), and mountains (9 sta-

tions). The assignment of each station to a region is

done subjectively by operational forecasters at MET

Norway based on their knowledge about individual

stations.

Over the open ocean, we utilize near-real-time data

from the global Advanced Scatterometer (ASCAT)

coastal wind product on a 12.5-km grid (Verhoef et al.

2012). The ASCAT wind products, provided by the

EUMETSAT Ocean and Sea Ice Satellite Application

Facility (OSI SAF), include a thorough quality control.

We utilized only the data with the highest-quality flags.

For the model comparison, the ASCAT data were re-

projected on the intercomparison domain, and NWP

model data were regridded onto a 12.5-km grid corre-

sponding to the grid spacing of the ASCAT data.

c. Weather during YOPP SOP-NH1

February 2018 was dominated by high pressure systems

over Scandinavia and low pressure activity in the Iceland–

Greenland Sea, which led to a negative temperature

anomaly over northern Scandinavia and warm anomalies

over the ocean and at Svalbard (ECMWF Copernicus

Climate Change Service, https://climate.copernicus.eu/).

In March, the pressure patterns were less consistent,

but on average a high pressure system was present north

of Svalbard with a low pressure system northeast of

Scandinavia organizing the advection of cold air south-

ward over the Barents Sea. In March a positive temper-

ature anomaly was only present in the northwestern part

of the intercomparison domain. The sea ice concentration

anomaly was negative for the entire domain and period.

The North Atlantic Oscillation (NAO) is the domi-

nant mode of variability in the North Atlantic region

from synoptic to interannual and decadal time scales

(Woollings et al. 2015). It indicates that February was

an unusual month. An NAO index of 1.58 is the

fifth-highest value for all February months from 1950 to

2018 (NOAA Climate Prediction Center, https://

www.cpc.ncep.noaa.gov/). An NAO index of 20.93 in

March indicates a clear difference in weather during the

two months. However, March (ranked as the fifteenth-

lowest value of all March months) was not as extreme

in terms of NAO as February.

3. Model intercomparison

In the following we first present a general overview of

verification results before we focus on individual pa-

rameters. At the end of the section some aspects of

observation, interpolation and representativeness errors

are discussed.

a. General verification

Standard deviation of the error (SDE) and bias, av-

eraged over all stations, for mean sea level pressure

(MSLP), 2-m air temperature (T2), and 10-m wind

speed (WS10) are presented in Fig. 2 together with
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information about statistical significance. It is impor-

tant to note that errors in Fig. 2 are not weighted and

therefore do not represent the model domain average,

but the average errors over the irregularly distributed

observational network shown in Fig. 1. The Initial

MSLP SDEs are small for all forecast systems, but in-

crease rapidly with lead time. For shorter lead times

than 110 h AROME-Arctic has significant smaller

SDEs than IFS-HRES, while after 130 h the opposite

is true. CAPS has significantly larger errors than the

other models after 112 h, which is however not found

in the driving Canadian Global Deterministic Prediction

System, and which is under investigation. While

AROME-Arctic and IFS-HRES show a negligible bias,

CAPS develops a positive bias after a few hours. Only

forecasts initialized at 0000 UTC are included in the

statistics, and the results indicate a small common di-

urnal cycle in SDEwith amaximumerror in themorning

(16 and 130h).

The T2 forecasts show a large SDE already in the

analysis (38–48C), and the increase with lead time is

more moderate than for MSLP. Furthermore, a diurnal

cycle in SDE is present with higher accuracy during

daytime, in the presence of solar radiation and higher

temperatures, while larger errors are found during

nighttime (similar to MSLP). While AROME-Arctic

and MF-AROME only have minor biases, CAPS and

IFS-HRES show a diurnal cycle with a cold bias during

daytime. Most of the differences seen between model

performances are significant.

AROME-Arctic and MF-AROME show slightly

lower SDE for WS10 than CAPS and IFS-HRES (only

significant for the shortest lead times). The largest

difference between the models is found in the biases,

which for most lead times are statistically significant.

AROME-Arctic and CAPS have negligible biases,

while IFS-HRES and MF-AROME on average un-

derestimate WS10 by ;1m s21. Only a weak diurnal

cycle is seen in WS10 biases (maximum underestima-

tion during daytime). A short spinup time of CAPS

WS10 from the initial conditions is seen.

For all three parameters, errors grow more slowly in

IFS-HRES than in the three high-resolution models

(i.e., the added value of high-resolution models are

dependent on lead time). In the case of MSLP, which is

a surface field but represents a vertically integrated

quantity, this reflects the leading role of the IFS in

terms of synoptic-scale dynamics (Haiden et al. 2018a).

In the case of T2 andWS10, the apparently slower error

growth actually results from larger errors already at

FIG. 1. Model integration domains: CAPS is employed inside the black frame, AROME-Arctic and MF-AROME are inside the blue

frame, and IFS-HRES has global coverage. The model intercomparison area is inside the blue domain. Norwegian SYNOP observation

used for verification are plotted as black (3 island stations), yellow (14 Svalbard stations), orange (40 coast stations), blue (39 fjord

stations), green (25 inland stations), and red (9 mountain stations) circles. Not all stations observe all parameters. Shown in gray colors is

the sea ice concentration from IFS-HRES 0000 UTC 1 Mar and in green/brown colors the model topography from AROME-Arctic.
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initialization time in the IFS compared to the higher-

resolution models, as can be seen in Fig. 2.

Statistics averaged over all stations, as presented in

Fig. 2, may hide important information. Figure 3 shows

verification of MSLP, T2m, WS10, daily precipitation

(precip24), and total cloud cover (TCC; no observations

available in mountain areas) forecasts for different re-

gions (see section 2b for details). To give information

about statistical significant differences between regions

and forecast systems, 95% confidence intervals are

calculated by bootstrapping (not shown). ForMSLP, T2,

WS10, and TCC these confidence intervals are 0.1 hPa,

0.148C, 0.13m s21, and 3.3% respectively. Differences

seen for these parameters are therefore mostly signifi-

cant. For daily precipitation, the uncertainty is much

higher due to fewer observations, and the differences

are not all significant.

The first feature to notice is the huge spread in fore-

cast accuracy across regions, parameters, and models.

Furthermore, no model is superior for all parameters

and regions. IFS-HRES verifies consistently better for

MSLP than AROME-Arctic and CAPS across regions.

The inaccurate treatment of lateral boundary forcing in

regional models is discussed, for example, by Warner

et al. (1997) and Davies (2014) and may explain part of

this behavior. Other possible explanations are better

assimilation of large-scale weather in global models,

tuning of global models with focus on synoptic cyclones

(e.g., Sandu et al. 2013), more small-scale noise in

higher-resolution systems, and for AROME-Arctic the

use of 6-h older LBC from IFS-HRES. Furthermore,

all models have a pronounced positive MSLP bias in

mountain regions (and inland and in Svalbard) most

likely to be attributable to the uncertainty in reduction

of observations and/or forecasted pressure to MSLP

(Pauley 1998).

The largest T2 errors are found inland, in mountains

(IFS-HRES and MF-AROME), and at Svalbard

(CAPS). The bias varies from248C (CAPS at Svalbard)

to 118C (MF-AROME at islands), while SDE varies

from ;18C (IFS-HRES at islands) to ;68C (MF-

AROME inland). The CAPS bias at Svalbard (stations

at the coast and in fjords) is related to an unrealistic sea

ice cover around Svalbard (not shown). In general, small

forecast errors are found where sea surface tempera-

tures, which most of the time are reasonably well de-

scribed in the models, have a substantial influence (i.e.,

coasts, fjords, and islands). Also, WS10 biases vary

substantially across regions and models from 23ms21

in mountain regions (IFS-HRES and MF-AROME)

to 11.5m s21 at islands (AROME-Arctic and CAPS).

In general, SDE can be expected to scale with wind

speed itself and is therefore higher in windier regions.

However, forecast accuracy of WS10 is not fully eval-

uated by SDE and bias, and other aspects will be

discussed below.

FIG. 2. Standard deviation of error (solid lines) and bias (dashed lines) as function of lead time.Models are IFS-HRES (red), AROME-

Arctic (blue), CAPS (black), and MF-AROME (cyan; MSLP not available fromMF-AROME). Verified parameters are MSLP, T2, and

WS10. Verification period is YOPP SOP-NH1, and all forecasts are initialized at 0000 UTC. The 95% confidence interval is calculated by

bootstrapping. The dots on top (bottom) indicate significance for SDE (bias). Colors indicate which models are compared (model one to

the left, lead time , 0), and model two is shown for all individual lead times if confidence intervals are not overlapping.
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While precip24 scores vary across regions and models,

some common significant features are low (high) SDE at

islands (mountains and fjords) and a positive bias in

mountain regions. In addition, AROME-Arctic and

MF-AROME forecast less precipitation than CAPS and

IFS-HRES (significant at the coast, fjords and inland).

Undercatch of solid precipitation in observations

(Rasmussen et al. 2012) is a severe problem for pre-

cipitation verification at high latitudes and/or altitudes.

This is not taken into consideration in Fig. 3 (but dis-

cussed below) hence we suspect that the positive bias in

the mountains is actually smaller, that the small positive

bias at the coast and in the fjords for IFS-HRES and

CAPS most likely will change to a negative bias, and

that the underestimations of AROME-Arctic and MF-

AROME are actually even more pronounced.

For TCC, forecast characteristics are more dependent

on the forecast model than on the region. IFS-HRES

has a smaller SDE than the other forecast systems,

which at least partly can be attributed to manual ob-

servations representing a larger area, and a more bi-

nary cloud cover field in the high-resolution models.

IFS-HRES has a positive bias and AROME-Arctic and

MF-AROME have smaller biases, while CAPS has a

negative bias partly related to a long spinup of cloud

properties which currently is under investigation.

FIG. 3. Mean error (bias) and SDE for MSLP, T2m, WS10, daily precipitation (precipitation), and TCC during

YOPP SOP-NH1. Each circle represents one region and one model. Models are given by color: IFS-HRES (red),

AROME-Arctic (blue), CAPS (black), and MF-AROME (cyan). Regions are indicated by letter (see Fig. 1):

islands (I), coast (C), fjords (F), inland (L), mountain (M), and Svalbard (S). Lead times included are125,126, . . . ,

148 h for all parameters, with the exception of accumulated precipitation where lead times142 h minus118 h are

used. Forecasts used are initialized at 0000 and 1200 UTC.
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Ideally, (gridded) high-resolution observation data-

sets are needed to evaluate spatial patterns in the fore-

casts. However, in this study we use point observations

for verification. We therefore calculate the correlation

between all observation sites for T2, WS10, TCC, and

precip24. Correlations are then averaged in bins by the

distance between the stations and plotted as variograms

in Fig. 4 (Marzban et al. 2009). A rapid decorrelation

with distance indicates stronger dominance of small-

scale features. The observations of WS10 show a steep

drop of correlation (approximately 0.35 after 100 km),

followed by TCC (approximately 0.55 after 100km),

precip24 (approximately 0.6 after 100km), and T2 (ap-

proximately 0.7 after 100km). It should be noted that

WS10, T2, and TCC are hourly data while precipitation

are daily totals due to the limited availability of hourly

precipitation data. A shorter accumulation period for

precipitation would most likely reduce the spatial cor-

relation. In general, IFS-HRES has a higher spatial

correlation than the other models, which is expected

due to the coarser horizontal resolution. Furthermore,

none of the models is able to reproduce the very steep

FIG. 4. Variograms showing spatial correlation between sites in observations and forecasts. Correlation as a

function of distance between SYNOP sites is calculated, and the average over stations with similar distances are

plotted. Observations are in green, IFS-HRES in red, AROME-Arctic in blue, CAPS in black, andMF-AROME in

cyan. Parameters are 2-m air temperature, 10-m wind speed, daily precipitation, and total cloud cover.
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observed spatial decorrelation of WS10. For T2 and

WS10AROME-Arctic andMF-AROME are closest to

the observed decorrelation, while CAPS matches best

the observed curve for precip24 up to about 400 km.

The lower spatial resolution of IFS-HRES shows up

most clearly for precipitation. That the models find the

small scales difficult to simulate is not surprisingly all

the time the effective resolution of the models are even

larger than the model grid spacing (Skamarock 2004).

For distances beyond ;650 km the correlations are

mainly between the Norwegian mainland and Svalbard

where the forecasts underestimate (overestimate) the

correlation of observed temperature (precipitation).

b. Temperature

All forecast systems struggle with T2 forecasts inland

(Fig. 3). To better understand this problem we verify T2

stratified by TCC andWS10 (Fig. 5) and separate results

into 0600, 1200, and 1800 UTC (when reliable cloud

observations are available). T2 forecast errors increase

in cloud-free conditions, while an increase in TCC re-

duces forecast errors. During calm conditions, a large

spread in errors is seen as well as a positive bias, while

errors are reduced in windy conditions, but with a small

negative bias for all models. The fact that this negative

bias is present throughout the day points to turbulent

FIG. 5. Conditional verification of T2 for inland stations. Box-and-whiskers plot of T2 errors (forecasted minus

observed) conditioned by (top) TCC and (bottom) wind. Cloud-free is defined as TCC less than 30% and cloudy as

TCC larger than 70%.Calm conditions are defined asWS10 less than 1.5m s21 andwindy conditions asWS10 larger

than 3m s21. Each box is divided into models (IFS-HRES in red, AROME-Arctic in blue, CAPS in black, and

MF-AROME in cyan) and time of day. Number of cases is plotted at top, and outliers are omitted to increase

readability in plots.
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mixing rather than cloud effects, however only IFS-

HRES and MF-AROME show an underestimation of

wind speed in cases where both observations and fore-

casts are.3ms21. Both stratified by TCC andWS10 the

forecast errors decrease in the presence of solar radia-

tion and higher temperatures (i.e., smaller errors at

1200 UTC). The conditional verification has some un-

certainties for a number of reasons: 1) the need to set

specific thresholds for cloud-free, cloudy, calm, and

windy situations; 2) there is no one-to-one relation be-

tween TCC and cloud radiative effect; 3) dependence on

the weather development prior to the verification time;

and 4) limited sample size in terms of station number

and total number of pairs of observations. Nevertheless,

the increase in T2 forecast error during calm, cloud-

free conditions without the presence of solar radiation

points toward issues in the representation of the stable

boundary layer as a common problem for all forecast

systems. Haiden et al. (2018b) have recently investigated

this problem for the IFS. They found that in areas with

persistent snow cover the nighttime drop of T2 in the

model is underestimated due to the use of a single-

layer snowpack representation. It distributes the sur-

face cooling over the entire depth of the snow, thereby

underestimating the speed and magnitude of the near-

surface drop in snow temperature, which adversely af-

fects T2 evolution. Furthermore, nighttime wind speeds

near the surface tend to be too high in low-wind condi-

tions, which contribute to a positive bias, as well as a

higher RMSE, in T2.

When the near-surface energy budget is determined

by local processes, the representation of surface condi-

tions becomes critical. We choose two days with cold

temperatures and two days with more mixed conditions

for reruns of MF-AROME starting from AROME-

Arctic initial surface conditions. In the original runs

MF-AROME initial surface conditions are interpolated

from the coarser-resolution global ARPEGE model,

while AROME-Arctic performs its own surface analy-

sis. The results (Table 2) show that the initial differences

in the analysis explain almost the entire difference found

in T2 errors (approximately a difference in SDE of 1K in

Fig. 3) between AROME-Arctic and MF-AROME.

Table 3 shows that the height differences are substantial

between model and actual station elevation for some re-

gions and models. This contributes to the T2 difference

between models and observations. However, no height

correction between model and station height is applied in

the verification process since this potentially can introduce

errors and noise during stable conditions. Furthermore, the

implementation of well-behaving height corrections during

stable conditions is beyond the scope of this study, but will

potentially reduce the errors (e.g., Sheridan et al. 2010).

The ability to forecast thawing conditions (T2 above

08C) is assessed using traditional categorical scores

evaluated from the contingency table: the equitable

threat score (ETS) and frequency bias index (FBI). The

ETS is an accuracy measure evaluated from the threat

score5 hits/(hits1 false alarms1misses), which then is

modified for hits obtained by a random forecast. The

FBI assesses the bias in the forecasted frequency of

an event [see Wilks (2011, chapter 8) or Jolliffe and

Stephenson (2012) for more details]. Forecast skill var-

ies across regions (Fig. 6), from highest skill at islands,

decreasing via coast to fjords to inland stations, but with

slightly higher skill in the mountains (temperature more

decoupled from surface) and at Svalbard (coast and

fjord stations). The low skill inland is consistent with the

larger T2 errors there, due to the generally higher T2

variability away from the coasts, and lower representa-

tiveness due to small-scale terrain features. In general,

AROME-Arctic shows a similar or slightly better per-

formance than the other models for all regions, which at

least partly can be explained by high-resolution surface

analysis and better representation of the topography.

Not all of the model differences show up in the ob-

jective verification since observations are not available

for all areas. To supplement the evaluation of T2 we

therefore show the average of hourly forecasts for day 2

during YOPP SOP-NH1 (Fig. 7). All models behave

very similarly over the open ocean. However, over areas

covered by sea ice (upper-left part of domain), CAPS

and, in particular, MF-AROME have lower tempera-

tures than IFS-HRES andAROME-Arctic. This suggests

TABLE 2. T2 errors inland for MF-AROME, for MF-AROME

initialized by AROME-Arctic surface conditions, and AROME-

Arctic. Errors are averaged over lead times (11, 12, 13, . . . ,

148 h) for 4 runs initialized at 0000 UTC 19 Feb and 12, 15, and 22

Mar 2018.

MF-AROME

MF-AROME

initialized by

AROME-Arctic

AROME-

Arctic

Mean absolute

error

4.08C 3.38C 3.18C

SDE 4.88C 4.08C 3.88C
Mean error 1.78C 1.68C 1.38C

TABLE 3. Mean difference (m) between model height and ob-

servation site height for different regions. AROME is both MF-

AROME and AROME-Arctic, which use the same orography.

Islands Coast Fjord Inland Mountain Svalbard

IFS-HRES 31 69 201 265 2254 100

AROME 10 38 70 109 2144 36

CAPS 10 48 125 174 2234 69
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that these T2 differences are due to differences in the

representation of sea ice (see section 2a). Further inland

at Svalbard and in the mountainous areas at the border

between Norway and Sweden, MF-AROME is clearly

colder than the othermodels, for example, a negative bias

in the mountains is seen in Fig. 3. A similar behavior is

found in the Alps for MF-AROME due to an underes-

timation of cloud cover (Vionnet et al. 2016). In general,

the high-resolution models forecast the lowest minimum

temperatures and, as expected, have more small-scale

details than IFS-HRES (see also Fig. 4).

c. Wind speed

In addition to overall error metrics such as SDE,

knowledge about forecast skill as a function of wind

speed is of practical interest in the prediction of high-

impact weather. This aspect is evaluated in Fig. 8 by the

ETS and FBI obtained from a contingency table for

different wind speed thresholds. The relative differences

in skill between the forecasts are more pronounced for

these metrics than in the SDE (Figs. 2 and 3). The fre-

quencies of occurrence of the highest wind speeds are

underestimated by CAPS, MF-AROME, and IFS-

HRES, while AROME-Arctic is closer to the ob-

served frequency. The skill (ETS) reflects the forecast

climatologies, with AROME-Arctic scoring better than

the othermodels, followed byCAPS,MF-AROME, and

IFS-HRES. Large intermodel differences over land can

be attributed to different representations of local pro-

cesses, for example, AROME-Arctic applies a smaller

surface roughness than MF-AROME. The benefit of

higher spatial resolution for the prediction of high-wind

events is shown by the low ETS values of IFS-HRES.

Figure 9 shows againETSandFBI for all lead times from

125 to148h, but this time against scatterometer-estimated

wind speed in the Barents Sea (details in section 2).

Forecasts are more similar and perform better than over

land.However, whenwind speeds exceed 12–13ms21 the

models start to diverge and IFS-HRES (MF-AROME

and AROME-Arctic) underestimates (overestimate)

the observed frequency. For wind speeds up to 12–

13ms21, AROME-Arctic and IFS-HRES have higher

skill than MF-AROME and CAPS. Above 12–13ms21,

the relative skill of IFS-HRES compared with

AROME-Arctic is reduced at the same time as IFS-

HRES starts to underestimate the observed frequencies.

Since all forecast climatologies are quite similar over the

ocean, we speculate that the higher skill of AROME-

Arctic and IFS-HRES (,12ms21) originates frommore

accurate initial conditions. In a case study in section 5a,

this is further investigated by using initial conditions

from AROME-Arctic in a MF-AROME run.

WS10 forecasts are more skillful over ocean than over

land (Figs. 8 and 9) in spite of the added predictability

which may be expected from topographic and coast line

forcing. However, the representativeness of observa-

tions is an issue in the verification process, and especially

in complex terrain. Since the scatterometer estimated

wind speed represents a coarser resolution (grid size

12.5 km) over a relatively homogeneous ocean we argue

that differences in observation representativeness (dis-

cussed further in section 3f) explain a large part of the

difference in ETS between land and ocean.

To get a more complete overview of forecast differ-

ences in wind speed, forecast averages during YOPP

SOP-NH1 are shown in Fig. 10. Wind speed forecasts

over the ocean show clear similarities, but slightly less

(more) wind in IFS-HRES (AROME-Arctic and MF-

AROME). Also over sea ice areas the forecast systems

are very similar, but MF-AROME has slightly lower

FIG. 6. (a) ETS and (b) FBI for T2 . 08C for models and regions. All statistics based on all lead times (hourly)

between 125 and 148 h.
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wind speed than the three other forecast systems.

However, when comparing land areas we find large

differences. In general, AROME-Arctic, followed by

CAPS, forecast more windy conditions that are most

pronounced over Svalbard and in the mountain regions,

which agrees with the objective verification. As for

temperature, IFS-HRES showsmore smooth patterns than

the high-resolution models. A closer inspection of CAPS is

also in agreementwith smoother fields as indicated inFig. 4.

d. Precipitation

To assess the forecast capabilities for precip24 fur-

ther, we use ETS and FBI (Fig. 11). The MF-AROME

forecasts have a similar frequency of occurrence as the

FIG. 7. Forecast average of 2-m air temperature for (a) IFS-HRES, (b) AROME-Arctic, (c) CAPS, and

(d) MF-AROME. The averages are taken over YOPP SOP-NH1 for all lead times (hourly) from 125 to 148 h.
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observations (FBI;1) except for the highest precipitation

amounts, while CAPS forecasts precipitation too fre-

quently. AROME-Arctic overestimates the number of

precipitation events but underestimates the frequency of

events between 5 and 25mmday21. The underestimated

precipitation frequency originates mainly from coast and

fjord regions (not shown). IFS-HRES produces too fre-

quent small amounts of precipitation, which is a known

problem, and underestimates the frequency of heavy

precipitation. This is in part related to the coarser resolu-

tion of IFS-HRES, whichmeans that the parameterization

schemes represent the precipitation averaged over a wider

area, which tends to generate a small precipitation trace

and decrease intense precipitation values. The forecast

skill measured by ETS reflects to some extent also the

forecast climatologies. MF-AROME and IFS-HRES

score better than AROME-Arctic and CAPS. In gen-

eral, forecast skill decreases for high-precipitation events.

Observations of solid precipitation are associated

with a high uncertainty due to wind-induced under-

catch (Rasmussen et al. 2012). The undercatch varies

with the type of precipitation gauge, windshield con-

figurations, and the weather itself. In this study, most of

the precipitation gauges are Geonor rain gauges with

single-Alter shields, and for 21 of them precipitation,

temperature, and wind speed are measured hourly and

the undercatch of solid precipitation can be estimated.

We use Eq. (4) in Kochendorfer et al. (2017), Eq. (13)

in Wolff et al. (2015), and Eq. (4) in Smith (2007) to

adjust the observed precipitation. Figure 12 shows the

accumulated precipitation from YOPP SOP-NH1, av-

eraged over these 21 sites, from the four model systems,

from the raw measurements and from the adjusted

measurements. The precipitation is divided into rain,

mixed precipitation, and solid precipitation by tem-

perature thresholds. CAPS and IFS-HRES have more

precipitation than the AROME models (as in Fig. 3),

but all models slightly overestimate the raw measure-

ments. Despite spread between the adjusted precipi-

tation estimates, all models clearly underestimate

the adjusted mixed phase and solid precipitation.

The possible underestimation is so large that it raises a

question about the adjustment of the observations.

However, at �Sih�c�cajávri (68.75508N, 23.53698E) two

estimates of accumulated precipitation during YOPP

SOP-NH1 are available. One is based on a precipitation

gauge and one is derived from changes in observed sur-

face snow water equivalent, provided by the Norwegian

FIG. 8. ETS and FBI for wind speed over all stations used in the model-intercomparison. Models are IFS-HRES

(red), AROME-Arctic (blue), CAPS (black), and MF-AROME (cyan). All hourly lead times from 125 to 148 h

are used.

FIG. 9. As in Fig. 8, butWS10 forecasts are now compared with scatterometer-based observed wind for an area in

the Barents Sea (248–388E and 728–768N). Forecasted wind from IFS-HRES (red), AROME-Arctic (blue), CAPS

(black), and MFAROME (cyan). Notice that the highest threshold (20.8m s21) includes 311 observations and 80,

477, 288, and 895 for the four models, respectively.
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Water Resources and Energy Directorate. While the

precipitation gauge–based estimate gives 19.7mm, the

increase in snow water equivalents gives 59.0mm, indi-

cating a substantial underestimation by the precipitation

gauge in support of the adjusted accumulations in Fig. 12.

Ideally, the verification with adjusted precipitation

should have included other metrics than only the

accumulated precipitation (e.g., skill scores). However, in

single cases the undercatch is also influenced by particle

shape, fall speed, and other microphysical properties in

such a way that unrealistic errors will be introduced in

skill verification. The adjustment algorithm therefore

performs best averaged over many cases and is most ap-

propriate for the estimation of systematic errors.

FIG. 10. Forecast average of 10-m wind speed for (a) IFS-HRES, (b) AROME-Arctic, (c) CAPS, and (d) MF-

AROME. The averages are taken over YOPP SOP-NH1 for all lead times (hourly) from 125 to 148 h.
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The gross features of forecasted spatial precipitation

patterns are similar for all models (Fig. 13). All forecasts

show maximum precipitation over steep topography at

Svalbard, along the Norwegian coast and mountains, and

at Nova Zemlja. However, the amplitude of the precipi-

tation differs between models, that is, the high-resolution

models produce higher maxima connected to the topog-

raphy than IFS-HRES which has smoother precipitation

(in agreement with Fig. 4). Another difference is that

AROME-Arctic and MF-AROME have less precipita-

tion over the ocean (and coast and fjords) than the other

models. Note also that IFS-HRES has slightly more

precipitation in sea ice covered areas which may be im-

portant for example, when forcing sea ice models.

e. Total cloud cover

The large-scale spatial patterns of TCCare similar in all

forecast systems, but regional differences are found in the

forecast climatologies (Fig. 14). All forecasts agree on a

cloudy atmosphere over the ocean, but CAPS has less,

while MF-AROME and IFS-HRES have a higher TCC.

A noticeable difference in total cloud cover between the

two AROME models are expected due to differences in

their turbulence schemes (Bengtsson et al. 2017). An-

other noticeable feature is the maximum in cloud cover

from IFS-HRES on the east side of the mountains at the

border betweenNorway and Sweden not seen in the high-

resolution models. The differences in forecasted cloud

cover call formore investigations beyond the scope of this

intercomparison study by using more appropriate cloud

observations (e.g., satellite based measurements).

f. Observation, interpolation, and
representativeness errors

The difference between forecasts and observations

can be divided in model, observational, interpolation,

and representativeness errors (Kanamitsu and DeHaan

2011). The actual performance of NWP systems will

become apparent only by taking the latter three com-

ponents into consideration. In particular for short-

term forecasts with relatively small forecast errors all

components contribute significantly. We have tried to

minimize the observational error by employing quality

controlled observations and taking the undercatch of

precipitation into account.

A station measurement for MSLP, T2, WS10, and

precip24 represents a point-observation, which differs

from what the gridbox value in a NWP system repre-

sents. This is due to subgrid phenomena (e.g., small-scale

FIG. 11. (a) ETS and (b) FBI for accumulated daily precipitation (between lead time 118 and 142 h) over all

stations used in the model intercomparison. Models are IFS-HRES (red), AROME-Arctic (blue), CAPS (black),

and MF-AROME (cyan).

FIG. 12. Accumulated precipitation (estimated by temperature

thresholds; rain in red, sleet in black, and solid precipitation in

blue) for AROME-Arctic, CAPS, IFS-HRES, and MF-AROME

with lead times from 125 to 148 h, observed precipitation from

Geonor rain gauges with single-Alter shields, and observed pre-

cipitation corrected withWolff et al. (2015), by Kochendorfer et al.

(2017), and by Smith (2007). The accumulated precipitation

amounts are averaged over 21 stations.
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precipitation) and local effects, which cannot be repro-

duced by the model. Some representativeness issues are

therefore present. To estimate these we include a simple

example based on the approach of Göber et al. (2008). If
several observations exist within a model grid box their

average is assumed to represent an approximation of the

grid box mean and will be treated as a ‘‘perfect’’ forecast.

However, the perfect forecast will not get perfect scores

(e.g., SDE will not be 0 unless all observations are the

same apart from constant differences), and the resulting

error can be regarded as the representativeness error

between a point and grid box average. Due to the sparse

observational network a general estimate is difficult to

establish. However, the two stations Tromsø (69.65368N,

FIG. 13. Forecast average of daily precipitation for (a) IFS-HRES, (b) AROME-Arctic, (c) CAPS, and (d) MF-

AROME. The averages are taken over YOPP SOP-NH1 for lead times between 125 and 148 h.
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18.93688E, 100mMSL) and TromsøLangnes (69.67678N,

18.91338E, 8m MSL) are situated only 2.7km apart. In

Table 4 we verify a perfect forecast constructed by

averaging these two observations and compare with the

4 NWP systems verified for the same observation sites.

The representativeness part, estimated by the perfect

forecast error divided by the NWP forecast error is

relatively small for MSLP (6%–11%), but higher for T2

(19%–35%), WS10 (36%–42%), and precip24 (15%–

20%). Note that these are conservative estimates (for

this kind of coastal location) since two stations are in-

sufficient for generating a true grid box average. If the

results from this example are more generally valid they

can explain parts of the large (small) initial errors for

FIG. 14. Forecast average of total cloud cover for (a) IFS-HRES, (b) AROME-Arctic, (c) CAPS, and (d) MF-

AROME. The averages are taken over YOPP SOP-NH1 for all lead times (hourly) from 125 to 148 h.
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WS10 and T2 (MSLP) in Fig. 2 supported by Fig. 4

showing the rapid spatial decorrelation of wind speed.

In addition, the better verification scores over ocean

than over land discussed in section 4c can also be ex-

plained by representativeness issues. Haiden et al.

(2012) have used the ‘‘perfect forecast’’ approach to

estimate the effect of representativeness on pre-

cipitation scores such as ETS and FBI for a grid spacing

of 25 km in Europe. They obtained a maximum

achievable ETS around 0.75 and an FBI of 1.05. In

summary, NWP forecasts perform better than the first

impression given by verification statistics, and inter-

preting NWP output as point forecasts leads to scale

mismatch effects that need consideration.

To estimate the sensitivity of the results to the inter-

polation method we calculate the root-mean-square

error (RMSE) by using nearest grid point (used in all

verification above) and bilinear interpolation methods.

For MSLP the changes are negligible (less than 0.5%),

while bilinear interpolation reduces errors for T2 (less

than 4%),WS10 (less than 3%), precip24 (less than 2%),

and TCC (less than 2%). Furthermore, we also up-

scale the three high-resolution models to a grid spacing

comparable to IFS-HRES. In general, the RMSE

changes by less than 5% with a few exceptions. For T2

the errors are reduced (in particular the nonsystematic

part) by ;10% at the coast and island stations. An in-

terpretation is that the high-resolution models have too

sharp temperature gradients along the coast and a

smoother field reduces the number of large errors. On

the other hand, in the fjords and inland the systematic T2

error increases by 6%–7%. The interpretation is that the

upscaling creates an undesirable mix of characteristics

(e.g., fjords, valleys, mountains) in these areas. For

WS10 (TCC) the errors increase (decrease) by less than

5%. Daily precipitation scores improve with upscaling

inland (6%), while decreasing in fjords (5%).

4. High-impact weather case studies

To supplement the summary verification, we look

in more detail at two high-impact cases during YOPP

SOP-NH1: 1) a mesoscale low pressure system in the

Barents Sea and 2) a severe precipitation event at

Svalbard.

a. Mesoscale low pressure system in the Barents Sea

In a southerly flow, a mesoscale disturbance with deep

convection (Fig. 15a) and strong winds (Fig. 15b) de-

veloped south of the sea ice edge in the Barents Sea on

24 March 2018. Based on model analyses (a small spread

between models exists) the low was located east of Bear

Island at 1200 UTC (marked with L in Figs. 15a,b). All

NWP systems develop a mesoscale disturbance with 24-h

lead time (Figs. 16a–d) and also 48h ahead (not shown).

However, wind speed and minimum pressure and loca-

tion vary. IFS-HRES forecasts (Fig. 16a) are less intense

(higher minimum pressure and less windy) compared to

the high-resolution models (Figs. 16b–d). The high-

resolution models forecasted 25ms21 (AROME-Arctic),

24ms21 (MF-AROME), and 22ms21 (CAPS) as maxi-

mum wind speed, while maximum wind speed in ASCAT

measurements are 22ms21. In comparison IFS-HRES

forecasted maximum wind speed of 20ms21. At the Bear

Island meteorological station (74.58N, 19.08E marked as

red circle in Figs. 15 and 16) the maximum observed wind

speed during the day is 19ms21 compared to 16ms21

from IFS-HRES, 18ms21 from AROME-Arctic and

CAPS, and 19ms21 from MF-AROME. The observed

wind speed is close to the observed maxima for a du-

ration of 6 h and this is also seen, together with good

timing of maximum wind, in all models with the ex-

ception ofMF-AROME, which only gives a wind speed

peak for 1 h. At Bear Island the minimum pressure in

all forecasts is almost identical, about 2 hPa higher than

observed.

The location of the mesoscale disturbance is similar

in IFS-HRES forecasts for 124 and 148 h (50–100-km

misplacement). However, the location of the system

varies more with lead time in the high-resolution

models (not shown). A closer inspection of the wind

pattern of MF-AROME (Fig. 16d) indicates a signifi-

cant change in location compared with IFS-HRES,

AROME-Arctic, and CAPS forecasts and available

TABLE 4. SDE for a perfect forecast constructed by averaging observations followingGöber et al. (2008) and for IFS-HRES, AROME-

Arctic, CAPS, andMF-AROMEduring YOPP SOP-NH1. The last row shows the percentage of SDE from perfect forecast for the model

with lowest/highest error.

MSLP T2 WS10 precip24

SDE perfect 0.08 0.58 0.81 0.39

SDE IFS 0.72 3.04 2.25 2.57

SDE AROME-Arctic 0.97 2.09 1.91 2.55

SDE CAPS 1.27 1.67 2.06 2.36

SDE MF-AROME — 2.75 1.95 1.98

% of error 6%–11% 19%–35% 36%–42% 15%–20%
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observations and analysis. To investigate this further,

reruns of MF-AROME with initial conditions from

AROME-Arctic were performed. Only changing the

initial surface conditions (Fig. 16e) did not improve the

location of the mesoscale disturbance. However, ad-

ditionally changing the upper-air initial conditions in

MF-AROME by using analysis from AROME-Arctic

(Fig. 16f) improved the low pressure position signifi-

cantly (misplacement reduced from approximately 230

to 90 km).

In this case all forecast systems simulate themesoscale

low pressure system. The benefit of IFS-HRES was

more consistent forecasts of location for different lead

times, while the high-resolution models better captured

the highest wind speeds in agreement with earlier

studies (e.g., McInnes et al. 2011). A bad location of the

system in the 124-h forecast from MF-AROME was

drastically improved by changes in the initial conditions.

b. Precipitation event at Svalbard

On 26 February 2018, a high pressure system over

northern Scandinavia and a low pressure system west

and north of Svalbard provided favorable conditions

for the transport of heat and moisture (mainly below

800 hPa) toward Svalbard. This type of atmospheric

large-scale setup is responsible for a majority of the

high-impact precipitation events (rain on snow) at Svalbard,

whichhavea substantial impacton infrastructure, society, and

wildlife (Serreze et al. 2015; Hansen et al. 2014). The max-

imum precipitation measured was 61.0mm in 36 h at

Ny-Ålesund (marked with A in Fig. 17). This might

seem small compared to midlatitude extreme values, but

46.0mm (measured in the first 24h of the period) was

the fourth-largest daily accumulated precipitation amount

between August 2008 and August 2018. In addition,

METAR temperature observations indicate that the ma-

jority of the precipitation was rain on frozen ground. Al-

ready on 28 February the daily mean temperature was

close to 2108C and stayed below 2108C for the next two

weeks, maintaining the surface ice conditions.

Precipitation forecasts for the Svalbard area (36-h

accumulations) are shown in Fig. 17. All forecasts have

a general agreement with the observations (Table 5)

in that the highest precipitation amounts are in the

northwest of Svalbard (point A; Ny-Ålesund), but which

model is closest to observed values varies between

observation sites (Table 5). Furthermore, the high-

resolution models have more spatial details and higher

maximum values than IFS-HRES (Fig. 17). However

the local details are difficult to verify due to the lack of

observations. One exception is the area around Long-

yearbyen (points B, C, and D), where there are sharp

gradients in the observations from Platåberget, 450m
MSL (point B) 13.4mm, Svalbard Airport (point C)

17.2mm, and Adventdalen (point D) 2.8mm. MF-

AROME was able to capture some local differences

with forecasts between 4.1 and 21.5mm (36h)21 in the

same area (see reduced precipitation in the Adven-

tdalen east of points B,C, andD). It should be noted that

even if local maximum precipitation values are higher in

FIG. 15. Polar mesoscale low pressure system at 1200 UTC 24 Mar 2018: (a) NOAA satellite picture and

(b) ASCAT wind speed (in white areas measurements are masked due to sea ice or land/islands). Low pressure

center in IFS-HRES analysis is marked with ‘‘L’’ and Bear Island marked as a red circle. Every 58 longitude and

every 2.58 latitude is plotted in red to make comparisons easier.
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the high-resolution forecasts the average precipitation

over the entire Svalbard archipelago is 18%–26%higher

in IFS-HRES.

It is important to correctly forecast precipitation type

in these situations. Since direct observations of precipi-

tation type are rare in time and space we use 2-m air

temperature as a proxy. Evidently, such a proxy has

limitations since it neglects information about the tem-

perature and humidity profile. Averaged over the 36-h

precipitation accumulation period the forecasts have neg-

ative temperature biases: IFS-HRES, 22.08C; AROME-

Arctic,21.48C: CAPS,21.88C; andMF,22.38C, indicating
too much solid precipitation and too little rain. If we as-

sume that the precipitation will be rain when the tem-

perature exceeds 118C (Jennings et al. 2018), we find that

the forecasts suggest that 70% (AROME-Arctic), 16%

(IFS-HRES), 5% (CAPS), and 43% (MF-AROME) of the

precipitation fell as rain at the observation sites. How-

ever, the METAR observations in Ny-Ålesund and

Longyearbyen indicated rain for most of the period and

if we replace the forecasted temperature with observed

temperature and keep the 18C threshold we get approx-

imately 80% as rain.

In summary, the potential added value of the high-

resolution models for this case is associated with higher

maximum precipitation and a redistribution of the pre-

cipitation patterns (forced by topography). In addition,

the high-resolution models have the potential to im-

prove precipitation type in complex terrain, compared

to IFS-HRES.

5. Summary

In this study, short-range forecasts from one global

(IFS-HRES) and three regionalNWPsystems (AROME-

Arctic, CAPS, and MF-AROME) are compared in the

European Arctic (Fig. 1). The model intercomparison

seeks to establish a baseline or reference for Arctic fore-

casting capabilities of near-surface parameters as sug-

gested by Jung et al. (2016). The forecast systems differ

in model formulation, resolution, initialization methods

and lateral boundary forcing (Table 1). IFS-HRES and

FIG. 16. MSLP and 10-m wind speed forecasts with 124-h lead time for (a) IFS-HRES, (b) AROME-Arctic, (c) CAPS,

(d)MF-AROME, (e)MF-AROMEwith surface initial conditions fromAROME-Arctic, and (f)MF-AROMEwith surface and upper-air

initial conditions from AROME-Arctic. Notice that MSLP is not available from MF-AROME. The red circle indicates Bear Island.

978 WEATHER AND FORECAST ING VOLUME 34



AROME-Arctic are operational systems (i.e., real-time

multiple daily runs), which include data assimilation, while

CAPS and MF-AROME are specific contributions to

YOPP and initialized from global models. The lateral

boundary conditions for the three regional systems are

taken from different global forecast systems; IFS-HRES

forces AROME-Arctic, GDPS forces CAPS, and AR-

PEGE forces MF-AROME. Differences in forecast

characteristics, weaknesses, and strengths therefore can

have a variety of sources which are not always easy to

pinpoint. The comparison is performed for YOPP SOP

NH1, awinter periodwith availability of extra radiosondes

in the Arctic which are expected to improve the actual

forecast skill. The period includes a rangeof large-scale flow

configurations and periods with both positive (February)

and negative NAO values (March).

Forecast accuracy varies across regions, parameters,

lead times, and NWP systems, and no NWP system is

superior to the other systems in all aspects. However,

compared to the other models, AROME-Arctic has the

advantage of surface and upper-air assimilation (as IFS-

HRES), high horizontal resolution (as MF-AROME

and CAPS), and model development with a focus on the

specific area of this comparison. These advantages are

FIG. 17. Forecasts of 36-h accumulated precipitation for Svalbard in the period from 0600 UTC 26 Feb to

1800 UTC 27 Feb 2018 with lead times from 16 to 142 h: (a) IFS-HRES, (b) AROME-Arctic, (c) CAPS, and

(d) MF-AROME. Observation sites are marked with letters as follows: Ny-Ålesund (A), Platåberget (B),

Svalbard Airport (C), Adventdalen (D), Isfjorden Radio (E), Barentsburg (F), Sveagruva (G), Hornsund (H),

and Hopen (I).
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reflected in the verification, where AROME-Arctic on

average performs better than the other models.

There is a general agreement between models on the

larger-scale patterns of average cloud cover, tempera-

ture maxima, and wind speed maxima over ocean areas;

temperature minima over sea ice; and precipitation

maxima connected to topographic and coastal forcing.

IFS-HRES verifies best regardingMSLP, but all systems

are in good agreement with observations (SDEs less

than 1hPa initially and 2hPa or less after148h). Larger

differences between forecasted and observed MSLP are

mainly found in mountain areas, where it is problematic

to reduce surface pressure to mean sea level as shown by

Pauley (1998).

Several common model deficiencies are noted, al-

though their magnitude varies between the different

NWP systems. Problems associated with T2 forecasts

inland in cloud-free and calm conditions during night-

time, related to the representation of the stable bound-

ary layer are well known and studied (e.g., Sandu et al.

2013; Haiden et al. 2018b; Esau et al. 2018). Opposite to

this all models show a cold bias under windy conditions.

Another common deficiency is the low skill in dis-

tinguishing between freezing and nonfreezing condi-

tions inland which is important for Arctic infrastructure,

society, and wildlife (Hansen et al. 2014). For wind

speed forecasts, the models find it difficult to reproduce

the high spatial variations of WS10 over land and the

high-resolution models forecast generally more wind

than IFS-HRES [e.g., as seen in DuVivier et al. (2017)

andWalsh et al. (2007)]. However, in particular over the

ocean the skill is not necessarily improved by finer

horizontal resolution alone (similar to results from

Kalverla et al. 2019). Furthermore, adjusting for the

undercatch of solid precipitation in observations reveals

that most likely all forecast systems have too little pre-

cipitation in the area studied. This is an important

finding because this feature is not apparent if undercatch

in observations is not considered in the verification

process (which often is the case).

For near-surface weather parameters (i.e., T2, WS10,

precipitation) there are also several examples of

differences in local forecast skill between NWP systems,

for example, a cold bias is found related to over-

estimation of sea ice in the surroundings of Svalbard for

CAPS, while AROME-Arctic has a pronounced un-

derestimation of precipitation at the coast and fjords

(still under investigation). Furthermore, over land,

IFS-HRES and MF-AROME underestimate the wind

speed. It is particular that at higher elevations (e.g.,

mountain, inner part of Svalbard) the two models have

less wind than AROME-Arctic, which on average has

the highest wind speeds (Fig. 10). In addition, wind

forecasts over ocean from MF-AROME and CAPS are

less accurate than IFS-HRES and AROME-Arctic. The

sensitivity to initial conditions is investigated in a rerun

of MF-AROME. The original initial conditions (dy-

namical adaptation from the global ARPEGE model)

are replaced with initial conditions from the AROME-

Arctic data assimilation. For a case study with a meso-

scale low in the Barents Sea the new initial conditions

improve the location of the mesoscale low by 140 km.

Similar runs with initial surface conditions fromAROME-

Arctic in MF-AROME runs reduce the MF-AROME T2

errors to the same level as AROME-Arctic and highlight

the importance of surface assimilation as also shown in

Randriamampianina et al. (2019)

The forecast climatologies also reveal that there are

differences that are not evaluated in this study due to the

sparseness of observations. This includes differences

over areas covered by sea ice (e.g., T2, TCC, and pre-

cip24), ocean areas (TCC, precip24), and inland and

mountain areas at Svalbard (e.g., WS10 and T2). A

comparison of forecasted TCC with satellite based TCC

estimates would be a natural extension of this work,

together with the use of available field campaign, ship,

and buoy data over the sea ice and ocean.

Regional high-resolution models can add value com-

pared to global models by using finer resolution and

domain-tailored process representations (Jung et al.

2016). In this study, the added value of the high-

resolution models compared to IFS-HRES is most

pronounced and significant for WS10 and T2 in regions

with complex terrain and coast lines, as also found in

TABLE 5. Observed and forecasted (from16 to142 h) 36-h accumulated precipitation from 0600UTC 26 Feb to 1800UTC 27 Feb 2018

at Ny-Ålesund (A), Platåberget (B), Svalbard Airport (C), Adventdalen (D), Isfjorden Radio (E), Barentsburg (F), Sveagruva (G),

Hornsund (H), and Hopen (I).

36-h accumulated precip A B C D E F G H I

Observed 61.0 13.4 17.2 2.8 10.1 15.0 18.1 1.6 0.4

IFS-HRES 37.0 16.7 16.7 16.7 9.0 11.4 16.8 8.5 1.3

AROME-Arctic 42.6* 12.7 12.6 15.2 5.5 12.7 7.6 4.5 1.0

CAPS 37.0 16.6 15.5 16.5 3.0 6.0 12.1 2.3 0.9

MF-AROME 29.3 7.5 5.4 2.5 13.7 14.6 12.9 8.3 1.4
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numerous other studies (e.g., Rummukainen 2016;

Schellander-Gorgas et al. 2017). In contrast, in this study

the added value is negligible or negative for some pa-

rameters and regions, for example, MSLP and total

cloud cover in general, and for temperature and wind

speed at islands. In addition, it is shown that the errors

grow faster in the high-resolution models, indicating

that the added value of high-resolution models depends

on lead time.

In polar regions, the limited availability of reliable

observations is one of the greatest challenges in the

verification process (Casati et al. 2017). Furthermore,

verification often compares grid box values with point

observations. It is important to acknowledge that dif-

ferences between forecasts and observations arise from

observation, interpolation and representativeness er-

rors in addition to model errors. In this study, it was

found that observation errors and representativeness

issues contribute substantially to the difference be-

tween forecasted and observed WS10, T2, and (solid)

precipitation. We found large initial errors for WS10

(SDE ;2.5m s21) and T2 (SDE ;38C) indicating ob-

servation representativeness issues. In addition, an

example from two observation sites situated close to

each other shows that the subgrid variability, even for

high-resolution models, for this particular example

contributes a large part of the difference between

predicted and observed WS10 (;40%), T2 (;25%),

and daily precipitation (;15%). Furthermore, more

skillful WS10 forecasts are seen over ocean (against

ASCAT data) than over land (against SYNOP), which

may be due to representativeness issues of wind ob-

servations (Wieringa 1996). As the forecast systems

improve, and in particular for short-range forecasts, it

is important to quantify and understand all error

components and interpret results accordingly.
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